Spaces:
Running
docs: Add comprehensive Modal and HF Jobs documentation
Browse filesREADME:
- Updated Features section with Multi-Cloud Evaluation and Smart Cost Estimation
- Added Modal as infrastructure option alongside HF Jobs
- Updated requirements section with Modal account setup
- Added hardware comparison table for both platforms
- Updated job submission workflow with both platforms
- Added expected duration estimates
Documentation Screen:
- Created new 'Job Submission' tab with complete guide
- Platform comparison: HF Jobs vs Modal
- Detailed hardware options and pricing for both platforms
- Auto-selection logic with code examples
- Cost estimation deep-dive (historical vs MCP AI)
- Job monitoring guide for both platforms
- Step-by-step workflow example
- Comprehensive troubleshooting section (10 common issues)
- Coverage: setup, execution, monitoring, debugging
- README.md +46 -16
- screens/documentation.py +793 -0
|
@@ -62,8 +62,9 @@ This platform is part of a complete agent evaluation ecosystem built on two foun
|
|
| 62 |
- **π Real-time Leaderboard**: Live evaluation data from HuggingFace datasets
|
| 63 |
- **π€ Autonomous Agent Chat**: Interactive agent powered by smolagents with MCP tools (Track 2)
|
| 64 |
- **π¬ MCP Integration**: AI-powered analysis using remote MCP servers
|
| 65 |
-
-
|
| 66 |
-
-
|
|
|
|
| 67 |
- **π Performance Metrics**: GPU utilization, CO2 emissions, token usage tracking
|
| 68 |
- **π§ Agent Reasoning**: View step-by-step agent planning and tool execution
|
| 69 |
|
|
@@ -180,11 +181,13 @@ If you don't configure your own keys:
|
|
| 180 |
|
| 181 |
## π Submitting Evaluation Jobs
|
| 182 |
|
| 183 |
-
TraceMind-AI allows you to submit evaluation jobs
|
|
|
|
|
|
|
| 184 |
|
| 185 |
### β οΈ Requirements for Job Submission
|
| 186 |
|
| 187 |
-
**
|
| 188 |
|
| 189 |
1. **HuggingFace Pro Account** ($9/month)
|
| 190 |
- Sign up at: https://huggingface.co/pricing
|
|
@@ -199,6 +202,19 @@ TraceMind-AI allows you to submit evaluation jobs directly from the UI to Huggin
|
|
| 199 |
- β
**Run Jobs** (submit evaluation jobs)
|
| 200 |
- β οΈ Read-only tokens will NOT work
|
| 201 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
3. **Model Provider API Keys**
|
| 203 |
- OpenAI, Anthropic, Google, etc.
|
| 204 |
- Configure in Settings β LLM Provider API Keys
|
|
@@ -206,44 +222,58 @@ TraceMind-AI allows you to submit evaluation jobs directly from the UI to Huggin
|
|
| 206 |
|
| 207 |
### Hardware Options & Pricing
|
| 208 |
|
| 209 |
-
TraceMind auto-selects hardware based on your model:
|
| 210 |
|
|
|
|
| 211 |
- **cpu-basic**: API models (OpenAI, Anthropic) - ~$0.05/hr
|
| 212 |
- **t4-small**: Small models (4B-8B parameters) - ~$0.60/hr
|
| 213 |
- **a10g-small**: Medium models (7B-13B) - ~$1.10/hr
|
| 214 |
- **a100-large**: Large models (70B+) - ~$3.00/hr
|
|
|
|
| 215 |
|
| 216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
### How to Submit a Job
|
| 219 |
|
| 220 |
1. **Configure API Keys** (Settings tab):
|
| 221 |
-
- Add HF Token (with Run Jobs permission)
|
| 222 |
-
- Add Modal
|
| 223 |
- Add LLM provider keys (OpenAI, Anthropic, etc.)
|
| 224 |
|
| 225 |
2. **Create Evaluation** (New Evaluation tab):
|
| 226 |
-
- Select infrastructure
|
| 227 |
- Choose model and agent type
|
| 228 |
-
- Configure hardware (or use "auto")
|
| 229 |
- Set timeout (default: 1h)
|
|
|
|
| 230 |
- Click "Submit Evaluation"
|
| 231 |
|
| 232 |
3. **Monitor Job**:
|
| 233 |
-
- View job ID and status
|
| 234 |
-
- Track at
|
|
|
|
| 235 |
- Results automatically appear in leaderboard when complete
|
| 236 |
|
| 237 |
### What Happens During a Job
|
| 238 |
|
| 239 |
-
1. Job starts on
|
| 240 |
-
2.
|
| 241 |
-
3.
|
|
|
|
| 242 |
- Leaderboard entry (summary stats)
|
| 243 |
- Results dataset (test case details)
|
| 244 |
- Traces dataset (OTEL spans)
|
| 245 |
- Metrics dataset (GPU metrics, CO2 emissions)
|
| 246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
|
| 248 |
## Configuration
|
| 249 |
|
|
|
|
| 62 |
- **π Real-time Leaderboard**: Live evaluation data from HuggingFace datasets
|
| 63 |
- **π€ Autonomous Agent Chat**: Interactive agent powered by smolagents with MCP tools (Track 2)
|
| 64 |
- **π¬ MCP Integration**: AI-powered analysis using remote MCP servers
|
| 65 |
+
- **βοΈ Multi-Cloud Evaluation**: Submit jobs to HuggingFace Jobs or Modal (H200, A100, A10 GPUs)
|
| 66 |
+
- **π° Smart Cost Estimation**: Auto-select hardware and predict costs before running evaluations
|
| 67 |
+
- **π Trace Visualization**: Detailed OpenTelemetry trace analysis with GPU metrics
|
| 68 |
- **π Performance Metrics**: GPU utilization, CO2 emissions, token usage tracking
|
| 69 |
- **π§ Agent Reasoning**: View step-by-step agent planning and tool execution
|
| 70 |
|
|
|
|
| 181 |
|
| 182 |
## π Submitting Evaluation Jobs
|
| 183 |
|
| 184 |
+
TraceMind-AI allows you to submit evaluation jobs to **two cloud platforms**:
|
| 185 |
+
- **HuggingFace Jobs**: Managed compute with H200, A100, A10, T4 GPUs
|
| 186 |
+
- **Modal**: Serverless GPU compute with pay-per-second pricing
|
| 187 |
|
| 188 |
### β οΈ Requirements for Job Submission
|
| 189 |
|
| 190 |
+
**For HuggingFace Jobs:**
|
| 191 |
|
| 192 |
1. **HuggingFace Pro Account** ($9/month)
|
| 193 |
- Sign up at: https://huggingface.co/pricing
|
|
|
|
| 202 |
- β
**Run Jobs** (submit evaluation jobs)
|
| 203 |
- β οΈ Read-only tokens will NOT work
|
| 204 |
|
| 205 |
+
**For Modal (Optional Alternative):**
|
| 206 |
+
|
| 207 |
+
1. **Modal Account** (Free tier available)
|
| 208 |
+
- Sign up at: https://modal.com
|
| 209 |
+
- Generate API token at: https://modal.com/settings/tokens
|
| 210 |
+
- Pay-per-second billing (no monthly subscription)
|
| 211 |
+
|
| 212 |
+
2. **Configure Modal Credentials in Settings**
|
| 213 |
+
- MODAL_TOKEN_ID (starts with `ak-`)
|
| 214 |
+
- MODAL_TOKEN_SECRET (starts with `as-`)
|
| 215 |
+
|
| 216 |
+
**Both Platforms Require:**
|
| 217 |
+
|
| 218 |
3. **Model Provider API Keys**
|
| 219 |
- OpenAI, Anthropic, Google, etc.
|
| 220 |
- Configure in Settings β LLM Provider API Keys
|
|
|
|
| 222 |
|
| 223 |
### Hardware Options & Pricing
|
| 224 |
|
| 225 |
+
TraceMind **auto-selects optimal hardware** based on your model size and provider:
|
| 226 |
|
| 227 |
+
**HuggingFace Jobs:**
|
| 228 |
- **cpu-basic**: API models (OpenAI, Anthropic) - ~$0.05/hr
|
| 229 |
- **t4-small**: Small models (4B-8B parameters) - ~$0.60/hr
|
| 230 |
- **a10g-small**: Medium models (7B-13B) - ~$1.10/hr
|
| 231 |
- **a100-large**: Large models (70B+) - ~$3.00/hr
|
| 232 |
+
- Pricing: https://huggingface.co/pricing#spaces-pricing
|
| 233 |
|
| 234 |
+
**Modal:**
|
| 235 |
+
- **CPU**: API models - ~$0.0001/sec
|
| 236 |
+
- **A10G**: Small-medium models (7B-13B) - ~$0.0006/sec
|
| 237 |
+
- **A100-80GB**: Large models (70B+) - ~$0.0030/sec
|
| 238 |
+
- **H200**: Fastest inference - ~$0.0050/sec
|
| 239 |
+
- Pricing: https://modal.com/pricing
|
| 240 |
|
| 241 |
### How to Submit a Job
|
| 242 |
|
| 243 |
1. **Configure API Keys** (Settings tab):
|
| 244 |
+
- Add HF Token (with Run Jobs permission) - **required for both platforms**
|
| 245 |
+
- Add Modal credentials (MODAL_TOKEN_ID + MODAL_TOKEN_SECRET) - **for Modal only**
|
| 246 |
- Add LLM provider keys (OpenAI, Anthropic, etc.)
|
| 247 |
|
| 248 |
2. **Create Evaluation** (New Evaluation tab):
|
| 249 |
+
- **Select infrastructure**: HuggingFace Jobs or Modal
|
| 250 |
- Choose model and agent type
|
| 251 |
+
- Configure hardware (or use **"auto"** for smart selection)
|
| 252 |
- Set timeout (default: 1h)
|
| 253 |
+
- Click "π° Estimate Cost" to preview cost/duration
|
| 254 |
- Click "Submit Evaluation"
|
| 255 |
|
| 256 |
3. **Monitor Job**:
|
| 257 |
+
- View job ID and status in confirmation screen
|
| 258 |
+
- **HF Jobs**: Track at https://huggingface.co/jobs or use Job Monitoring tab
|
| 259 |
+
- **Modal**: Track at https://modal.com/apps
|
| 260 |
- Results automatically appear in leaderboard when complete
|
| 261 |
|
| 262 |
### What Happens During a Job
|
| 263 |
|
| 264 |
+
1. Job starts on selected infrastructure (HF Jobs or Modal)
|
| 265 |
+
2. Docker container built with required dependencies
|
| 266 |
+
3. SMOLTRACE evaluates your model with OpenTelemetry tracing
|
| 267 |
+
4. Results uploaded to 4 HuggingFace datasets:
|
| 268 |
- Leaderboard entry (summary stats)
|
| 269 |
- Results dataset (test case details)
|
| 270 |
- Traces dataset (OTEL spans)
|
| 271 |
- Metrics dataset (GPU metrics, CO2 emissions)
|
| 272 |
+
5. Results appear in TraceMind leaderboard automatically
|
| 273 |
+
|
| 274 |
+
**Expected Duration:**
|
| 275 |
+
- CPU jobs (API models): 2-5 minutes
|
| 276 |
+
- GPU jobs (local models): 15-30 minutes (includes model download)
|
| 277 |
|
| 278 |
## Configuration
|
| 279 |
|
|
@@ -1791,6 +1791,796 @@ TraceMind-MCP-Server demonstrates:
|
|
| 1791 |
""")
|
| 1792 |
|
| 1793 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1794 |
def create_documentation_screen():
|
| 1795 |
"""
|
| 1796 |
Create the complete documentation screen with tabs
|
|
@@ -1818,6 +2608,9 @@ def create_documentation_screen():
|
|
| 1818 |
with gr.Tab("π TraceMind-MCP-Server"):
|
| 1819 |
create_mcp_server_tab()
|
| 1820 |
|
|
|
|
|
|
|
|
|
|
| 1821 |
gr.Markdown("""
|
| 1822 |
---
|
| 1823 |
|
|
|
|
| 1791 |
""")
|
| 1792 |
|
| 1793 |
|
| 1794 |
+
def create_job_submission_tab():
|
| 1795 |
+
"""Create the Job Submission tab with full details about Modal and HF Jobs"""
|
| 1796 |
+
return gr.Markdown("""
|
| 1797 |
+
# βοΈ Job Submission
|
| 1798 |
+
|
| 1799 |
+
**Run SMOLTRACE Evaluations on Cloud Infrastructure**
|
| 1800 |
+
|
| 1801 |
+
TraceMind-AI provides seamless integration with two cloud compute platforms, allowing you to run agent evaluations with automated hardware selection, cost estimation, and real-time monitoring.
|
| 1802 |
+
|
| 1803 |
+
---
|
| 1804 |
+
|
| 1805 |
+
## π Table of Contents
|
| 1806 |
+
|
| 1807 |
+
- [Platform Overview](#-platform-overview)
|
| 1808 |
+
- [HuggingFace Jobs Integration](#-huggingface-jobs-integration)
|
| 1809 |
+
- [Modal Integration](#-modal-integration)
|
| 1810 |
+
- [Hardware Auto-Selection](#-hardware-auto-selection)
|
| 1811 |
+
- [Cost Estimation](#-cost-estimation)
|
| 1812 |
+
- [Job Monitoring](#-job-monitoring)
|
| 1813 |
+
- [Step-by-Step Guide](#-step-by-step-guide)
|
| 1814 |
+
- [Troubleshooting](#-troubleshooting)
|
| 1815 |
+
|
| 1816 |
+
---
|
| 1817 |
+
|
| 1818 |
+
## π Platform Overview
|
| 1819 |
+
|
| 1820 |
+
### Supported Platforms
|
| 1821 |
+
|
| 1822 |
+
| Platform | Best For | Pricing Model | GPU Options | Free Tier |
|
| 1823 |
+
|----------|----------|---------------|-------------|-----------|
|
| 1824 |
+
| **HuggingFace Jobs** | Managed infrastructure, dataset integration | Per-hour | T4, L4, A10, A100, V5e | β ($9/mo Pro required) |
|
| 1825 |
+
| **Modal** | Serverless compute, pay-per-second | Per-second | T4, L4, A10, A100-80GB, H200 | β
Free credits available |
|
| 1826 |
+
|
| 1827 |
+
### Key Differences
|
| 1828 |
+
|
| 1829 |
+
**HuggingFace Jobs**:
|
| 1830 |
+
- β
Native HuggingFace ecosystem integration
|
| 1831 |
+
- β
Managed infrastructure with guaranteed availability
|
| 1832 |
+
- β
Built-in dataset storage and versioning
|
| 1833 |
+
- β οΈ Requires Pro account ($9/month)
|
| 1834 |
+
- β οΈ Per-hour billing (minimum 1 hour charge)
|
| 1835 |
+
|
| 1836 |
+
**Modal**:
|
| 1837 |
+
- β
Serverless architecture (no minimum charges)
|
| 1838 |
+
- β
Pay-per-second billing (more cost-effective for short jobs)
|
| 1839 |
+
- β
Latest GPUs (H200 available)
|
| 1840 |
+
- β
Free tier with credits
|
| 1841 |
+
- β οΈ Requires separate account setup
|
| 1842 |
+
- β οΈ Container cold start time (~2-3 minutes first run)
|
| 1843 |
+
|
| 1844 |
+
---
|
| 1845 |
+
|
| 1846 |
+
## π€ HuggingFace Jobs Integration
|
| 1847 |
+
|
| 1848 |
+
### Requirements
|
| 1849 |
+
|
| 1850 |
+
**1. HuggingFace Pro Account**
|
| 1851 |
+
- Cost: $9/month
|
| 1852 |
+
- Sign up: https://huggingface.co/pricing
|
| 1853 |
+
- Includes compute credits and priority support
|
| 1854 |
+
|
| 1855 |
+
**2. HuggingFace Token with Run Jobs Permission**
|
| 1856 |
+
```
|
| 1857 |
+
Steps to create token:
|
| 1858 |
+
1. Visit: https://huggingface.co/settings/tokens
|
| 1859 |
+
2. Click "New token"
|
| 1860 |
+
3. Name: "TraceMind Evaluation"
|
| 1861 |
+
4. Permissions:
|
| 1862 |
+
β
Read (view datasets)
|
| 1863 |
+
β
Write (upload results)
|
| 1864 |
+
β
Run Jobs (submit evaluation jobs) β οΈ REQUIRED
|
| 1865 |
+
5. Copy token (starts with hf_)
|
| 1866 |
+
6. Save in TraceMind Settings
|
| 1867 |
+
```
|
| 1868 |
+
|
| 1869 |
+
### Hardware Options
|
| 1870 |
+
|
| 1871 |
+
| Hardware | vCPUs | GPU | Memory | Best For | Price/hr |
|
| 1872 |
+
|----------|-------|-----|--------|----------|----------|
|
| 1873 |
+
| `cpu-basic` | 2 | - | 16 GB | API models (OpenAI, Anthropic) | ~$0.05 |
|
| 1874 |
+
| `cpu-upgrade` | 8 | - | 32 GB | API models (high volume) | ~$0.10 |
|
| 1875 |
+
| `t4-small` | 4 | T4 (16GB) | 16 GB | Small models (4B-8B) | ~$0.60 |
|
| 1876 |
+
| `t4-medium` | 8 | T4 (16GB) | 32 GB | Small models (batched) | ~$1.00 |
|
| 1877 |
+
| `a10g-small` | 4 | A10G (24GB) | 32 GB | Medium models (7B-13B) | ~$1.10 |
|
| 1878 |
+
| `a10g-large` | 12 | A10G (24GB) | 92 GB | Medium models (high memory) | ~$1.50 |
|
| 1879 |
+
| `a100-large` | 12 | A100 (80GB) | 142 GB | Large models (70B+) | ~$3.00 |
|
| 1880 |
+
| `v5e-1x1` | 4 | TPU v5e | 16 GB | TPU-optimized workloads | ~$1.20 |
|
| 1881 |
+
|
| 1882 |
+
Full pricing: https://huggingface.co/pricing#spaces-pricing
|
| 1883 |
+
|
| 1884 |
+
### Auto-Selection Logic
|
| 1885 |
+
|
| 1886 |
+
When you select `hardware: auto`, TraceMind applies this logic:
|
| 1887 |
+
|
| 1888 |
+
```python
|
| 1889 |
+
# API models (LiteLLM/Inference)
|
| 1890 |
+
if provider in ["litellm", "inference"]:
|
| 1891 |
+
hardware = "cpu-basic"
|
| 1892 |
+
|
| 1893 |
+
# Local models (Transformers)
|
| 1894 |
+
elif "70b" in model.lower() or "65b" in model.lower():
|
| 1895 |
+
hardware = "a100-large" # Large models
|
| 1896 |
+
elif "13b" in model.lower() or "34b" in model.lower():
|
| 1897 |
+
hardware = "a10g-large" # Medium models
|
| 1898 |
+
elif "7b" in model.lower() or "8b" in model.lower() or "4b" in model.lower():
|
| 1899 |
+
hardware = "t4-small" # Small models
|
| 1900 |
+
else:
|
| 1901 |
+
hardware = "t4-small" # Default
|
| 1902 |
+
```
|
| 1903 |
+
|
| 1904 |
+
### Job Workflow
|
| 1905 |
+
|
| 1906 |
+
```
|
| 1907 |
+
1. Configure Settings
|
| 1908 |
+
ββ> Add HF Token (with Run Jobs permission)
|
| 1909 |
+
ββ> Add LLM provider API keys
|
| 1910 |
+
|
| 1911 |
+
2. Create Evaluation
|
| 1912 |
+
ββ> Select "HuggingFace Jobs" as infrastructure
|
| 1913 |
+
ββ> Choose model and configuration
|
| 1914 |
+
ββ> Hardware auto-selected or manually chosen
|
| 1915 |
+
|
| 1916 |
+
3. Submit Job
|
| 1917 |
+
ββ> TraceMind validates credentials
|
| 1918 |
+
ββ> Submits job via HF Jobs API
|
| 1919 |
+
ββ> Returns job ID for monitoring
|
| 1920 |
+
|
| 1921 |
+
4. Job Execution
|
| 1922 |
+
ββ> Container built with dependencies
|
| 1923 |
+
ββ> SMOLTRACE runs evaluation
|
| 1924 |
+
ββ> Results uploaded to HF datasets
|
| 1925 |
+
ββ> Leaderboard updated automatically
|
| 1926 |
+
|
| 1927 |
+
5. Monitor Progress
|
| 1928 |
+
ββ> Track at: https://huggingface.co/jobs
|
| 1929 |
+
ββ> Or use Job Monitoring tab in TraceMind
|
| 1930 |
+
```
|
| 1931 |
+
|
| 1932 |
+
---
|
| 1933 |
+
|
| 1934 |
+
## β‘ Modal Integration
|
| 1935 |
+
|
| 1936 |
+
### Requirements
|
| 1937 |
+
|
| 1938 |
+
**1. Modal Account**
|
| 1939 |
+
- Free tier: $30 free credits per month
|
| 1940 |
+
- Sign up: https://modal.com
|
| 1941 |
+
|
| 1942 |
+
**2. Modal API Credentials**
|
| 1943 |
+
```
|
| 1944 |
+
Steps to get credentials:
|
| 1945 |
+
1. Visit: https://modal.com/settings/tokens
|
| 1946 |
+
2. Click "Create token"
|
| 1947 |
+
3. Copy:
|
| 1948 |
+
- Token ID (starts with ak-)
|
| 1949 |
+
- Token Secret (starts with as-)
|
| 1950 |
+
4. Save in TraceMind Settings:
|
| 1951 |
+
- MODAL_TOKEN_ID: ak-xxxxx
|
| 1952 |
+
- MODAL_TOKEN_SECRET: as-xxxxx
|
| 1953 |
+
```
|
| 1954 |
+
|
| 1955 |
+
### Hardware Options
|
| 1956 |
+
|
| 1957 |
+
| Hardware | GPU | Memory | Best For | Price/sec | Equivalent $/hr |
|
| 1958 |
+
|----------|-----|--------|----------|-----------|-----------------|
|
| 1959 |
+
| `CPU` | - | 16 GB | API models | ~$0.0001 | ~$0.36 |
|
| 1960 |
+
| `T4` | T4 (16GB) | 16 GB | Small models (4B-8B) | ~$0.0002 | ~$0.72 |
|
| 1961 |
+
| `L4` | L4 (24GB) | 24 GB | Small-medium models | ~$0.0004 | ~$1.44 |
|
| 1962 |
+
| `A10G` | A10G (24GB) | 32 GB | Medium models (7B-13B) | ~$0.0006 | ~$2.16 |
|
| 1963 |
+
| `L40S` | L40S (48GB) | 48 GB | Large models (optimized) | ~$0.0012 | ~$4.32 |
|
| 1964 |
+
| `A100` | A100 (40GB) | 64 GB | Large models | ~$0.0020 | ~$7.20 |
|
| 1965 |
+
| `A100-80GB` | A100 (80GB) | 128 GB | Very large models (70B+) | ~$0.0030 | ~$10.80 |
|
| 1966 |
+
| `H100` | H100 (80GB) | 192 GB | Latest generation inference | ~$0.0040 | ~$14.40 |
|
| 1967 |
+
| `H200` | H200 (141GB) | 256 GB | Cutting-edge, highest memory | ~$0.0050 | ~$18.00 |
|
| 1968 |
+
|
| 1969 |
+
Full pricing: https://modal.com/pricing
|
| 1970 |
+
|
| 1971 |
+
**π‘ Cost Advantage**: Modal's per-second billing is more cost-effective for jobs <1 hour!
|
| 1972 |
+
|
| 1973 |
+
### Auto-Selection Logic
|
| 1974 |
+
|
| 1975 |
+
When you select `hardware: auto`, TraceMind applies this logic:
|
| 1976 |
+
|
| 1977 |
+
```python
|
| 1978 |
+
# API models
|
| 1979 |
+
if provider in ["litellm", "inference"]:
|
| 1980 |
+
gpu = None # CPU only
|
| 1981 |
+
|
| 1982 |
+
# Local models (Transformers)
|
| 1983 |
+
elif "70b" in model.lower() or "65b" in model.lower():
|
| 1984 |
+
gpu = "A100-80GB" # Large models need 80GB
|
| 1985 |
+
elif "13b" in model.lower() or "34b" in model.lower():
|
| 1986 |
+
gpu = "A10G" # Medium models
|
| 1987 |
+
elif "7b" in model.lower() or "8b" in model.lower():
|
| 1988 |
+
gpu = "A10G" # Small models efficient on A10G
|
| 1989 |
+
else:
|
| 1990 |
+
gpu = "A10G" # Default
|
| 1991 |
+
```
|
| 1992 |
+
|
| 1993 |
+
### Modal-Specific Features
|
| 1994 |
+
|
| 1995 |
+
**Dynamic Python Version Matching**
|
| 1996 |
+
```python
|
| 1997 |
+
# Automatically matches your environment
|
| 1998 |
+
python_version = f"{sys.version_info.major}.{sys.version_info.minor}"
|
| 1999 |
+
# Example: "3.10" on HF Space, "3.12" locally
|
| 2000 |
+
```
|
| 2001 |
+
|
| 2002 |
+
**Optimized Docker Images**
|
| 2003 |
+
```python
|
| 2004 |
+
# GPU jobs: CUDA-optimized base
|
| 2005 |
+
image = "nvidia/cuda:12.6.0-cudnn-devel-ubuntu22.04"
|
| 2006 |
+
|
| 2007 |
+
# CPU jobs: Lightweight
|
| 2008 |
+
image = "debian-slim"
|
| 2009 |
+
```
|
| 2010 |
+
|
| 2011 |
+
**Smart Package Installation**
|
| 2012 |
+
```python
|
| 2013 |
+
# GPU jobs get full stack
|
| 2014 |
+
packages = [
|
| 2015 |
+
"smoltrace",
|
| 2016 |
+
"transformers",
|
| 2017 |
+
"torch",
|
| 2018 |
+
"accelerate", # For device_map
|
| 2019 |
+
"bitsandbytes", # For quantization
|
| 2020 |
+
"hf_transfer", # Fast downloads
|
| 2021 |
+
"nvidia-ml-py" # GPU metrics
|
| 2022 |
+
]
|
| 2023 |
+
|
| 2024 |
+
# CPU jobs get minimal dependencies
|
| 2025 |
+
packages = ["smoltrace", "litellm", "ddgs"]
|
| 2026 |
+
```
|
| 2027 |
+
|
| 2028 |
+
### Job Workflow
|
| 2029 |
+
|
| 2030 |
+
```
|
| 2031 |
+
1. Configure Settings
|
| 2032 |
+
ββ> Add Modal Token ID + Secret
|
| 2033 |
+
ββ> Add HF Token (for dataset upload)
|
| 2034 |
+
ββ> Add LLM provider API keys
|
| 2035 |
+
|
| 2036 |
+
2. Create Evaluation
|
| 2037 |
+
ββ> Select "Modal" as infrastructure
|
| 2038 |
+
ββ> Choose model and configuration
|
| 2039 |
+
ββ> Hardware auto-selected
|
| 2040 |
+
|
| 2041 |
+
3. Submit Job
|
| 2042 |
+
ββ> TraceMind creates dynamic Modal app
|
| 2043 |
+
ββ> Submits job in background thread
|
| 2044 |
+
ββ> Returns Modal Call ID
|
| 2045 |
+
|
| 2046 |
+
4. Job Execution
|
| 2047 |
+
ββ> Image builds (or uses cache)
|
| 2048 |
+
ββ> Model downloads to Modal storage
|
| 2049 |
+
ββ> SMOLTRACE runs evaluation
|
| 2050 |
+
ββ> Results uploaded to HF datasets
|
| 2051 |
+
|
| 2052 |
+
5. Monitor Progress
|
| 2053 |
+
ββ> Track at: https://modal.com/apps
|
| 2054 |
+
ββ> View real-time streaming logs
|
| 2055 |
+
```
|
| 2056 |
+
|
| 2057 |
+
---
|
| 2058 |
+
|
| 2059 |
+
## π― Hardware Auto-Selection
|
| 2060 |
+
|
| 2061 |
+
### How It Works
|
| 2062 |
+
|
| 2063 |
+
TraceMind **automatically selects optimal hardware** based on:
|
| 2064 |
+
1. **Provider type**: LiteLLM/Inference (API) vs Transformers (local)
|
| 2065 |
+
2. **Model size**: Extracted from model name (e.g., "70b", "13b", "8b")
|
| 2066 |
+
3. **Platform**: Modal or HuggingFace Jobs
|
| 2067 |
+
|
| 2068 |
+
### Selection Matrix
|
| 2069 |
+
|
| 2070 |
+
| Model Type | Model Size | HF Jobs | Modal |
|
| 2071 |
+
|------------|------------|---------|-------|
|
| 2072 |
+
| API (OpenAI, Anthropic) | Any | `cpu-basic` | `CPU` |
|
| 2073 |
+
| Transformers | 4B-8B | `t4-small` | `A10G` |
|
| 2074 |
+
| Transformers | 13B-34B | `a10g-large` | `A10G` |
|
| 2075 |
+
| Transformers | 70B+ | `a100-large` | `A100-80GB` |
|
| 2076 |
+
|
| 2077 |
+
### Override Auto-Selection
|
| 2078 |
+
|
| 2079 |
+
You can manually select hardware if needed:
|
| 2080 |
+
|
| 2081 |
+
```
|
| 2082 |
+
Reasons to override:
|
| 2083 |
+
- You know your model needs more memory
|
| 2084 |
+
- You want to test performance on different GPUs
|
| 2085 |
+
- You want to optimize cost vs speed tradeoff
|
| 2086 |
+
```
|
| 2087 |
+
|
| 2088 |
+
### Cost Estimation Shows Auto-Selection
|
| 2089 |
+
|
| 2090 |
+
When you click **"π° Estimate Cost"** with `auto` hardware:
|
| 2091 |
+
|
| 2092 |
+
**Modal Example**:
|
| 2093 |
+
```
|
| 2094 |
+
Hardware: auto β **A100-80GB** (Modal)
|
| 2095 |
+
Estimated Cost: $0.45
|
| 2096 |
+
Duration: 15 minutes
|
| 2097 |
+
```
|
| 2098 |
+
|
| 2099 |
+
**HF Jobs Example**:
|
| 2100 |
+
```
|
| 2101 |
+
Hardware: auto β **a100-large** (HF Jobs)
|
| 2102 |
+
Estimated Cost: $0.75
|
| 2103 |
+
Duration: 15 minutes
|
| 2104 |
+
```
|
| 2105 |
+
|
| 2106 |
+
---
|
| 2107 |
+
|
| 2108 |
+
## π° Cost Estimation
|
| 2109 |
+
|
| 2110 |
+
### How Cost Estimation Works
|
| 2111 |
+
|
| 2112 |
+
TraceMind provides **AI-powered cost estimation** before you submit jobs:
|
| 2113 |
+
|
| 2114 |
+
**Data Sources**:
|
| 2115 |
+
1. **Historical Data** (preferred): Analyzes past runs from leaderboard
|
| 2116 |
+
2. **MCP Server** (fallback): Uses `estimate_cost` MCP tool with Gemini 2.5 Pro
|
| 2117 |
+
|
| 2118 |
+
### Estimation Process
|
| 2119 |
+
|
| 2120 |
+
```
|
| 2121 |
+
1. User clicks "π° Estimate Cost"
|
| 2122 |
+
|
| 2123 |
+
2. TraceMind checks for historical data
|
| 2124 |
+
ββ> If found: Use average cost/duration from past runs
|
| 2125 |
+
ββ> If not found: Call MCP Server for AI analysis
|
| 2126 |
+
|
| 2127 |
+
3. Auto-selection applied
|
| 2128 |
+
ββ> Determines actual hardware that will be used
|
| 2129 |
+
ββ> Maps to pricing table
|
| 2130 |
+
|
| 2131 |
+
4. Display estimate
|
| 2132 |
+
ββ> Cost breakdown
|
| 2133 |
+
ββ> Duration estimate
|
| 2134 |
+
ββ> Hardware details
|
| 2135 |
+
```
|
| 2136 |
+
|
| 2137 |
+
### Cost Estimate Components
|
| 2138 |
+
|
| 2139 |
+
**Historical Data Estimate**:
|
| 2140 |
+
```markdown
|
| 2141 |
+
## π° Cost Estimate
|
| 2142 |
+
|
| 2143 |
+
**π Historical Data (5 past runs)**
|
| 2144 |
+
|
| 2145 |
+
| Metric | Value |
|
| 2146 |
+
|--------|-------|
|
| 2147 |
+
| Model | meta-llama/Llama-3.1-70B |
|
| 2148 |
+
| Hardware | auto β **A100-80GB** (Modal) |
|
| 2149 |
+
| Estimated Cost | $0.45 |
|
| 2150 |
+
| Duration | 15.2 minutes |
|
| 2151 |
+
|
| 2152 |
+
---
|
| 2153 |
+
|
| 2154 |
+
*Based on 5 previous evaluation runs in the leaderboard.*
|
| 2155 |
+
```
|
| 2156 |
+
|
| 2157 |
+
**MCP AI Estimate**:
|
| 2158 |
+
```markdown
|
| 2159 |
+
## π° Cost Estimate - AI Analysis
|
| 2160 |
+
|
| 2161 |
+
**π€ Powered by MCP Server + Gemini 2.5 Pro**
|
| 2162 |
+
|
| 2163 |
+
*This estimate was generated by AI analysis since no historical
|
| 2164 |
+
data is available for this model.*
|
| 2165 |
+
|
| 2166 |
+
**Hardware**: auto β **A100-80GB** (Modal)
|
| 2167 |
+
|
| 2168 |
+
---
|
| 2169 |
+
|
| 2170 |
+
Based on the model size (70B parameters) and evaluation
|
| 2171 |
+
configuration, I estimate:
|
| 2172 |
+
|
| 2173 |
+
**Cost Breakdown**:
|
| 2174 |
+
- Model download: ~5 minutes @ $0.0030/sec = $0.90
|
| 2175 |
+
- Evaluation (100 tests): ~10 minutes @ $0.0030/sec = $1.80
|
| 2176 |
+
- **Total estimated cost**: $2.70
|
| 2177 |
+
|
| 2178 |
+
**Duration**: 15-20 minutes
|
| 2179 |
+
|
| 2180 |
+
**Recommendations**:
|
| 2181 |
+
- For cost savings, consider using A10G with quantization
|
| 2182 |
+
- For faster inference, H200 reduces duration to ~8 minutes
|
| 2183 |
+
```
|
| 2184 |
+
|
| 2185 |
+
### Accuracy of Estimates
|
| 2186 |
+
|
| 2187 |
+
**Historical estimates**: Β±10% accuracy
|
| 2188 |
+
- Based on actual past runs
|
| 2189 |
+
- Accounts for model-specific behavior
|
| 2190 |
+
|
| 2191 |
+
**MCP AI estimates**: Β±30% accuracy
|
| 2192 |
+
- Uses model knowledge and heuristics
|
| 2193 |
+
- Conservative (tends to overestimate)
|
| 2194 |
+
|
| 2195 |
+
**Factors affecting accuracy**:
|
| 2196 |
+
- Model download time varies (network speed, caching)
|
| 2197 |
+
- Evaluation complexity depends on dataset
|
| 2198 |
+
- GPU availability can affect queue time
|
| 2199 |
+
|
| 2200 |
+
---
|
| 2201 |
+
|
| 2202 |
+
## π Job Monitoring
|
| 2203 |
+
|
| 2204 |
+
### HuggingFace Jobs Monitoring
|
| 2205 |
+
|
| 2206 |
+
**Built-in Tab**: Go to **"π Job Monitoring"** in TraceMind
|
| 2207 |
+
|
| 2208 |
+
**Features**:
|
| 2209 |
+
```
|
| 2210 |
+
π Inspect Job
|
| 2211 |
+
ββ> Enter HF Job ID
|
| 2212 |
+
ββ> View status, hardware, timestamps
|
| 2213 |
+
ββ> See next steps based on status
|
| 2214 |
+
|
| 2215 |
+
π Job Logs
|
| 2216 |
+
ββ> Load execution logs
|
| 2217 |
+
ββ> Auto-refresh option
|
| 2218 |
+
ββ> Search and filter
|
| 2219 |
+
|
| 2220 |
+
π Recent Jobs
|
| 2221 |
+
ββ> List your recent jobs
|
| 2222 |
+
ββ> Quick status overview
|
| 2223 |
+
ββ> Click to inspect
|
| 2224 |
+
```
|
| 2225 |
+
|
| 2226 |
+
**Job Statuses**:
|
| 2227 |
+
- β³ **QUEUED**: Waiting to start
|
| 2228 |
+
- π **STARTING**: Initializing (1-2 min)
|
| 2229 |
+
- βΆοΈ **RUNNING**: Executing evaluation
|
| 2230 |
+
- β
**SUCCEEDED**: Completed successfully
|
| 2231 |
+
- β **FAILED**: Error occurred (check logs)
|
| 2232 |
+
- π« **CANCELLED**: Manually stopped
|
| 2233 |
+
|
| 2234 |
+
**External Monitoring**:
|
| 2235 |
+
- HF Dashboard: https://huggingface.co/jobs
|
| 2236 |
+
- CLI: `hf jobs ps` and `hf jobs logs <job_id>`
|
| 2237 |
+
|
| 2238 |
+
### Modal Monitoring
|
| 2239 |
+
|
| 2240 |
+
**Modal Dashboard**: https://modal.com/apps
|
| 2241 |
+
|
| 2242 |
+
**Features**:
|
| 2243 |
+
- Real-time streaming logs
|
| 2244 |
+
- GPU utilization graphs
|
| 2245 |
+
- Cost tracking
|
| 2246 |
+
- Container status
|
| 2247 |
+
|
| 2248 |
+
**Log Visibility**:
|
| 2249 |
+
TraceMind uses streaming output for Modal jobs:
|
| 2250 |
+
```python
|
| 2251 |
+
# You'll see in real-time:
|
| 2252 |
+
================================================================================
|
| 2253 |
+
Starting SMOLTRACE evaluation on Modal
|
| 2254 |
+
Command: smoltrace-eval --model Qwen/Qwen3-8B ...
|
| 2255 |
+
Python version: 3.10.0
|
| 2256 |
+
GPU: NVIDIA A10
|
| 2257 |
+
GPU Memory: 23.68 GB
|
| 2258 |
+
================================================================================
|
| 2259 |
+
|
| 2260 |
+
Note: Model download may take several minutes for large models (14B = ~28GB)
|
| 2261 |
+
Downloading and initializing model...
|
| 2262 |
+
|
| 2263 |
+
[Download progress bars appear here]
|
| 2264 |
+
[Evaluation progress appears here]
|
| 2265 |
+
|
| 2266 |
+
================================================================================
|
| 2267 |
+
EVALUATION COMPLETED
|
| 2268 |
+
Return code: 0
|
| 2269 |
+
================================================================================
|
| 2270 |
+
```
|
| 2271 |
+
|
| 2272 |
+
### Expected Duration
|
| 2273 |
+
|
| 2274 |
+
**CPU Jobs (API Models)**:
|
| 2275 |
+
- Queue time: <1 minute
|
| 2276 |
+
- Execution: 2-5 minutes
|
| 2277 |
+
- **Total**: ~5 minutes
|
| 2278 |
+
|
| 2279 |
+
**GPU Jobs (Local Models)**:
|
| 2280 |
+
- Queue time: 1-3 minutes
|
| 2281 |
+
- Image build: 2-5 minutes (first run, then cached)
|
| 2282 |
+
- Model download: 5-15 minutes (14B = ~10 min, 70B = ~15 min)
|
| 2283 |
+
- Evaluation: 3-10 minutes (depends on dataset size)
|
| 2284 |
+
- **Total**: 15-30 minutes
|
| 2285 |
+
|
| 2286 |
+
**Pro Tip**: Modal caches images and models, so subsequent runs are **much faster** (skip image build and model download).
|
| 2287 |
+
|
| 2288 |
+
---
|
| 2289 |
+
|
| 2290 |
+
## π Step-by-Step Guide
|
| 2291 |
+
|
| 2292 |
+
### Complete Workflow Example
|
| 2293 |
+
|
| 2294 |
+
**Scenario**: Evaluate GPT-4 via LiteLLM on HuggingFace Jobs
|
| 2295 |
+
|
| 2296 |
+
#### Step 1: Configure API Keys
|
| 2297 |
+
|
| 2298 |
+
```
|
| 2299 |
+
1. Go to "βοΈ Settings" tab
|
| 2300 |
+
2. Under "HuggingFace Configuration":
|
| 2301 |
+
- HF Token: [your token with Run Jobs permission]
|
| 2302 |
+
- Click "Save API Keys"
|
| 2303 |
+
3. Under "LLM Provider API Keys":
|
| 2304 |
+
- OpenAI API Key: [your key]
|
| 2305 |
+
- Click "Save API Keys"
|
| 2306 |
+
```
|
| 2307 |
+
|
| 2308 |
+
#### Step 2: Navigate to New Evaluation
|
| 2309 |
+
|
| 2310 |
+
```
|
| 2311 |
+
1. Click "π New Evaluation" in sidebar
|
| 2312 |
+
2. You'll see the evaluation form with multiple sections
|
| 2313 |
+
```
|
| 2314 |
+
|
| 2315 |
+
#### Step 3: Configure Evaluation
|
| 2316 |
+
|
| 2317 |
+
**Infrastructure**:
|
| 2318 |
+
```
|
| 2319 |
+
Infrastructure Provider: HuggingFace Jobs
|
| 2320 |
+
Hardware: auto (will select cpu-basic)
|
| 2321 |
+
```
|
| 2322 |
+
|
| 2323 |
+
**Model Configuration**:
|
| 2324 |
+
```
|
| 2325 |
+
Model: openai/gpt-4
|
| 2326 |
+
Provider: litellm
|
| 2327 |
+
```
|
| 2328 |
+
|
| 2329 |
+
**Agent Configuration**:
|
| 2330 |
+
```
|
| 2331 |
+
Agent Type: both (tool + code)
|
| 2332 |
+
Search Provider: duckduckgo
|
| 2333 |
+
Tools: python_interpreter, visit_webpage, duckduckgo_search
|
| 2334 |
+
```
|
| 2335 |
+
|
| 2336 |
+
**Test Configuration**:
|
| 2337 |
+
```
|
| 2338 |
+
Dataset: kshitijthakkar/smoltrace-tasks
|
| 2339 |
+
Split: train
|
| 2340 |
+
Difficulty: all
|
| 2341 |
+
Parallel Workers: 1
|
| 2342 |
+
```
|
| 2343 |
+
|
| 2344 |
+
**Output & Monitoring**:
|
| 2345 |
+
```
|
| 2346 |
+
Output Format: hub (HuggingFace datasets)
|
| 2347 |
+
Enable OTEL: β
|
| 2348 |
+
Enable GPU Metrics: β
(N/A for CPU)
|
| 2349 |
+
Timeout: 1h
|
| 2350 |
+
```
|
| 2351 |
+
|
| 2352 |
+
#### Step 4: Estimate Cost
|
| 2353 |
+
|
| 2354 |
+
```
|
| 2355 |
+
1. Click "π° Estimate Cost"
|
| 2356 |
+
2. Review estimate:
|
| 2357 |
+
- Hardware: auto β **cpu-basic** (HF Jobs)
|
| 2358 |
+
- Cost: ~$0.08
|
| 2359 |
+
- Duration: ~3 minutes
|
| 2360 |
+
```
|
| 2361 |
+
|
| 2362 |
+
#### Step 5: Submit Job
|
| 2363 |
+
|
| 2364 |
+
```
|
| 2365 |
+
1. Click "Submit Evaluation"
|
| 2366 |
+
2. Confirmation appears:
|
| 2367 |
+
β
Job submitted successfully!
|
| 2368 |
+
|
| 2369 |
+
Job Details:
|
| 2370 |
+
- Run ID: job_abc12345
|
| 2371 |
+
- HF Job ID: kshitijthakkar/def67890
|
| 2372 |
+
- Hardware: cpu-basic
|
| 2373 |
+
- Platform: HuggingFace Jobs
|
| 2374 |
+
```
|
| 2375 |
+
|
| 2376 |
+
#### Step 6: Monitor Job
|
| 2377 |
+
|
| 2378 |
+
**Option A: TraceMind Job Monitoring**
|
| 2379 |
+
```
|
| 2380 |
+
1. Go to "π Job Monitoring" tab
|
| 2381 |
+
2. Click "π Inspect Job"
|
| 2382 |
+
3. Paste HF Job ID: kshitijthakkar/def67890
|
| 2383 |
+
4. Click "π Inspect Job"
|
| 2384 |
+
5. View status and click "π₯ Load Logs"
|
| 2385 |
+
```
|
| 2386 |
+
|
| 2387 |
+
**Option B: HuggingFace Dashboard**
|
| 2388 |
+
```
|
| 2389 |
+
1. Visit: https://huggingface.co/jobs
|
| 2390 |
+
2. Find your job by ID or timestamp
|
| 2391 |
+
3. View logs and status
|
| 2392 |
+
```
|
| 2393 |
+
|
| 2394 |
+
#### Step 7: View Results
|
| 2395 |
+
|
| 2396 |
+
```
|
| 2397 |
+
When job completes (SUCCEEDED):
|
| 2398 |
+
1. Go to "π Leaderboard" tab
|
| 2399 |
+
2. Click "Load Leaderboard"
|
| 2400 |
+
3. Find your run (job_abc12345)
|
| 2401 |
+
4. Click row to view detailed results
|
| 2402 |
+
```
|
| 2403 |
+
|
| 2404 |
+
---
|
| 2405 |
+
|
| 2406 |
+
## π§ Troubleshooting
|
| 2407 |
+
|
| 2408 |
+
### Common Issues & Solutions
|
| 2409 |
+
|
| 2410 |
+
#### 1. "Modal package not installed"
|
| 2411 |
+
|
| 2412 |
+
**Error**:
|
| 2413 |
+
```
|
| 2414 |
+
Modal package not installed. Install with: pip install modal
|
| 2415 |
+
```
|
| 2416 |
+
|
| 2417 |
+
**Solution**:
|
| 2418 |
+
```bash
|
| 2419 |
+
pip install modal>=0.64.0
|
| 2420 |
+
```
|
| 2421 |
+
|
| 2422 |
+
#### 2. "HuggingFace token not configured"
|
| 2423 |
+
|
| 2424 |
+
**Error**:
|
| 2425 |
+
```
|
| 2426 |
+
HuggingFace token not configured. Please set HF_TOKEN in Settings.
|
| 2427 |
+
```
|
| 2428 |
+
|
| 2429 |
+
**Solution**:
|
| 2430 |
+
1. Get token from: https://huggingface.co/settings/tokens
|
| 2431 |
+
2. Add in Settings β HuggingFace Configuration
|
| 2432 |
+
3. Ensure permissions include **Read**, **Write**, and **Run Jobs**
|
| 2433 |
+
|
| 2434 |
+
#### 3. "Modal authentication failed"
|
| 2435 |
+
|
| 2436 |
+
**Error**:
|
| 2437 |
+
```
|
| 2438 |
+
Modal authentication failed. Please verify your MODAL_TOKEN_ID
|
| 2439 |
+
and MODAL_TOKEN_SECRET in Settings.
|
| 2440 |
+
```
|
| 2441 |
+
|
| 2442 |
+
**Solution**:
|
| 2443 |
+
1. Get credentials from: https://modal.com/settings/tokens
|
| 2444 |
+
2. Add both:
|
| 2445 |
+
- MODAL_TOKEN_ID (starts with `ak-`)
|
| 2446 |
+
- MODAL_TOKEN_SECRET (starts with `as-`)
|
| 2447 |
+
3. Save and retry
|
| 2448 |
+
|
| 2449 |
+
#### 4. "Job failed - Python version mismatch"
|
| 2450 |
+
|
| 2451 |
+
**Error** (in Modal logs):
|
| 2452 |
+
```
|
| 2453 |
+
The 'submit_modal_job.<locals>.run_evaluation' Function
|
| 2454 |
+
was defined with Python 3.12, but its Image has 3.10.
|
| 2455 |
+
```
|
| 2456 |
+
|
| 2457 |
+
**Solution**:
|
| 2458 |
+
This is automatically fixed in the latest version! TraceMind now dynamically matches Python versions.
|
| 2459 |
+
|
| 2460 |
+
If still occurring:
|
| 2461 |
+
1. Pull latest code: `git pull origin main`
|
| 2462 |
+
2. Restart app
|
| 2463 |
+
|
| 2464 |
+
#### 5. "Fast download using 'hf_transfer' is enabled but package not available"
|
| 2465 |
+
|
| 2466 |
+
**Error** (in Modal logs):
|
| 2467 |
+
```
|
| 2468 |
+
ValueError: Fast download using 'hf_transfer' is enabled but
|
| 2469 |
+
'hf_transfer' package is not available.
|
| 2470 |
+
```
|
| 2471 |
+
|
| 2472 |
+
**Solution**:
|
| 2473 |
+
This is automatically fixed in the latest version! TraceMind now includes `hf_transfer` in GPU job packages.
|
| 2474 |
+
|
| 2475 |
+
If still occurring:
|
| 2476 |
+
1. Pull latest code
|
| 2477 |
+
2. Modal will rebuild image with new dependencies
|
| 2478 |
+
|
| 2479 |
+
#### 6. "Job stuck at 'Downloading model'"
|
| 2480 |
+
|
| 2481 |
+
**Symptoms**:
|
| 2482 |
+
- Logs show "Downloading and initializing model..."
|
| 2483 |
+
- No progress for 10+ minutes
|
| 2484 |
+
|
| 2485 |
+
**Explanation**:
|
| 2486 |
+
- Large models (14B+) take 10-15 minutes to download
|
| 2487 |
+
- This is normal! Model size: 28GB for 14B, 140GB for 70B
|
| 2488 |
+
|
| 2489 |
+
**Solution**:
|
| 2490 |
+
- Be patient - download is in progress (Modal's network is fast)
|
| 2491 |
+
- Future runs will be cached and start instantly
|
| 2492 |
+
- Check Modal dashboard for download progress
|
| 2493 |
+
|
| 2494 |
+
#### 7. "Job completed but no results in leaderboard"
|
| 2495 |
+
|
| 2496 |
+
**Symptoms**:
|
| 2497 |
+
- Job status shows SUCCEEDED
|
| 2498 |
+
- No entry in leaderboard
|
| 2499 |
+
|
| 2500 |
+
**Possible Causes**:
|
| 2501 |
+
1. Results uploaded to different user's namespace
|
| 2502 |
+
2. Leaderboard not refreshed
|
| 2503 |
+
3. Job failed during result upload
|
| 2504 |
+
|
| 2505 |
+
**Solution**:
|
| 2506 |
+
```
|
| 2507 |
+
1. Refresh leaderboard: Click "Load Leaderboard"
|
| 2508 |
+
2. Check HF dataset repos:
|
| 2509 |
+
- kshitijthakkar/smoltrace-leaderboard
|
| 2510 |
+
- kshitijthakkar/smoltrace-results-<timestamp>
|
| 2511 |
+
3. Verify HF token has Write permission
|
| 2512 |
+
4. Check job logs for upload errors
|
| 2513 |
+
```
|
| 2514 |
+
|
| 2515 |
+
#### 8. "Cannot submit job - HuggingFace Pro required"
|
| 2516 |
+
|
| 2517 |
+
**Error**:
|
| 2518 |
+
```
|
| 2519 |
+
HuggingFace Pro Account ($9/month) required to submit jobs.
|
| 2520 |
+
Free accounts cannot submit jobs.
|
| 2521 |
+
```
|
| 2522 |
+
|
| 2523 |
+
**Solution**:
|
| 2524 |
+
- Option A: Upgrade to HF Pro: https://huggingface.co/pricing
|
| 2525 |
+
- Option B: Use Modal instead (has free tier with credits)
|
| 2526 |
+
|
| 2527 |
+
#### 9. "Modal job exits after image build"
|
| 2528 |
+
|
| 2529 |
+
**Symptoms**:
|
| 2530 |
+
- Logs show: "Stopping app - local entrypoint completed"
|
| 2531 |
+
- Job ends without running evaluation
|
| 2532 |
+
|
| 2533 |
+
**Solution**:
|
| 2534 |
+
This was a known issue (fixed in latest version). The problem was using `.spawn()` with `with app.run()` context.
|
| 2535 |
+
|
| 2536 |
+
Current implementation uses `.remote()` in background thread, which ensures job completes.
|
| 2537 |
+
|
| 2538 |
+
If still occurring:
|
| 2539 |
+
1. Pull latest code: `git pull origin main`
|
| 2540 |
+
2. Restart app
|
| 2541 |
+
3. Resubmit job
|
| 2542 |
+
|
| 2543 |
+
#### 10. "Cost estimate shows wrong hardware"
|
| 2544 |
+
|
| 2545 |
+
**Symptoms**:
|
| 2546 |
+
- Selected Modal with 70B model
|
| 2547 |
+
- Cost estimate shows "a10g-small" instead of "A100-80GB"
|
| 2548 |
+
|
| 2549 |
+
**Solution**:
|
| 2550 |
+
This was a known issue (fixed in latest version). Cost estimation now applies platform-specific auto-selection logic.
|
| 2551 |
+
|
| 2552 |
+
Verify fix:
|
| 2553 |
+
1. Pull latest code
|
| 2554 |
+
2. Click "π° Estimate Cost"
|
| 2555 |
+
3. Should show: `auto β **A100-80GB** (Modal)`
|
| 2556 |
+
|
| 2557 |
+
---
|
| 2558 |
+
|
| 2559 |
+
## π Getting Help
|
| 2560 |
+
|
| 2561 |
+
### Resources
|
| 2562 |
+
|
| 2563 |
+
**Documentation**:
|
| 2564 |
+
- TraceMind Docs: This tab!
|
| 2565 |
+
- SMOLTRACE Docs: [GitHub](https://github.com/Mandark-droid/SMOLTRACE)
|
| 2566 |
+
- Modal Docs: https://modal.com/docs
|
| 2567 |
+
- HF Jobs Docs: https://huggingface.co/docs/hub/spaces-sdks-docker
|
| 2568 |
+
|
| 2569 |
+
**Community**:
|
| 2570 |
+
- GitHub Issues: [TraceMind-AI Issues](https://github.com/Mandark-droid/TraceMind-AI/issues)
|
| 2571 |
+
- LinkedIn: [@kshitij-thakkar](https://www.linkedin.com/in/kshitij-thakkar-2061b924)
|
| 2572 |
+
|
| 2573 |
+
**Support**:
|
| 2574 |
+
- For TraceMind bugs: Open GitHub issue
|
| 2575 |
+
- For Modal issues: https://modal.com/docs/support
|
| 2576 |
+
- For HF Jobs issues: https://discuss.huggingface.co/
|
| 2577 |
+
|
| 2578 |
+
---
|
| 2579 |
+
|
| 2580 |
+
*TraceMind-AI - Multi-cloud agent evaluation made simple* βοΈ
|
| 2581 |
+
""")
|
| 2582 |
+
|
| 2583 |
+
|
| 2584 |
def create_documentation_screen():
|
| 2585 |
"""
|
| 2586 |
Create the complete documentation screen with tabs
|
|
|
|
| 2608 |
with gr.Tab("π TraceMind-MCP-Server"):
|
| 2609 |
create_mcp_server_tab()
|
| 2610 |
|
| 2611 |
+
with gr.Tab("βοΈ Job Submission"):
|
| 2612 |
+
create_job_submission_tab()
|
| 2613 |
+
|
| 2614 |
gr.Markdown("""
|
| 2615 |
---
|
| 2616 |
|