|
|
import gradio as gr |
|
|
import yfinance as yf |
|
|
import numpy as np |
|
|
import pandas as pd |
|
|
import plotly.graph_objects as go |
|
|
from datetime import datetime |
|
|
|
|
|
def download_stock_data(ticker, start_date, end_date): |
|
|
stock = yf.Ticker(ticker) |
|
|
df = stock.history(start=start_date, end=end_date) |
|
|
return df |
|
|
|
|
|
def plot_interactive_logarithmic_stock_chart(ticker, start_date, end_date): |
|
|
try: |
|
|
stock = yf.Ticker(ticker) |
|
|
data = stock.history(start=start_date, end=end_date) |
|
|
|
|
|
if data.empty: |
|
|
return "No data available for the specified date range." |
|
|
|
|
|
x = (data.index - data.index[0]).days |
|
|
y = np.log(data['Close']) |
|
|
slope, intercept = np.polyfit(x, y, 1) |
|
|
|
|
|
future_days = 365 * 10 |
|
|
all_days = np.arange(len(x) + future_days) |
|
|
log_trend = np.exp(intercept + slope * all_days) |
|
|
|
|
|
inner_upper_band = log_trend * 2 |
|
|
inner_lower_band = log_trend / 2 |
|
|
outer_upper_band = log_trend * 4 |
|
|
outer_lower_band = log_trend / 4 |
|
|
|
|
|
extended_dates = pd.date_range(start=data.index[0], periods=len(all_days), freq='D') |
|
|
|
|
|
fig = go.Figure() |
|
|
|
|
|
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], mode='lines', name='Close Price', line=dict(color='blue'))) |
|
|
fig.add_trace(go.Scatter(x=extended_dates, y=log_trend, mode='lines', name='Log Trend', line=dict(color='red'))) |
|
|
fig.add_trace(go.Scatter(x=extended_dates, y=inner_upper_band, mode='lines', name='Inner Upper Band', line=dict(color='green'))) |
|
|
fig.add_trace(go.Scatter(x=extended_dates, y=inner_lower_band, mode='lines', name='Inner Lower Band', line=dict(color='green'))) |
|
|
fig.add_trace(go.Scatter(x=extended_dates, y=outer_upper_band, mode='lines', name='Outer Upper Band', line=dict(color='orange'))) |
|
|
fig.add_trace(go.Scatter(x=extended_dates, y=outer_lower_band, mode='lines', name='Outer Lower Band', line=dict(color='orange'))) |
|
|
|
|
|
fig.update_layout( |
|
|
title=f'{ticker} Stock Price (Logarithmic Scale) with Extended Trend Lines and Outer Bands', |
|
|
xaxis_title='Date', |
|
|
yaxis_title='Price (Log Scale)', |
|
|
yaxis_type="log", |
|
|
height=800, |
|
|
legend=dict(x=0.01, y=0.99, bgcolor='rgba(255, 255, 255, 0.8)'), |
|
|
hovermode='x unified' |
|
|
) |
|
|
|
|
|
fig.update_xaxes( |
|
|
rangeslider_visible=True, |
|
|
rangeselector=dict( |
|
|
buttons=list([ |
|
|
dict(count=1, label="1m", step="month", stepmode="backward"), |
|
|
dict(count=6, label="6m", step="month", stepmode="backward"), |
|
|
dict(count=1, label="YTD", step="year", stepmode="todate"), |
|
|
dict(count=1, label="1y", step="year", stepmode="backward"), |
|
|
dict(step="all") |
|
|
]) |
|
|
) |
|
|
) |
|
|
|
|
|
return fig |
|
|
except Exception as e: |
|
|
return f"An error occurred: {str(e)}" |
|
|
|
|
|
|
|
|
current_date = datetime.now().strftime("%Y-%m-%d") |
|
|
|
|
|
|
|
|
custom_css = """ |
|
|
.container {max-width: 100% !important; padding: 0 !important;} |
|
|
.plot-container {height: 800px !important; width: 100% !important;} |
|
|
.react-plotly-container {height: 100% !important; width: 100% !important;} |
|
|
""" |
|
|
|
|
|
|
|
|
with gr.Blocks(css=custom_css, title="Alan's Logarithmic Charting Tool") as iface: |
|
|
gr.Markdown("# Alan's Logarithmic Charting Tool") |
|
|
gr.Markdown("Enter a stock ticker and date range to generate a logarithmic chart.") |
|
|
|
|
|
with gr.Row(): |
|
|
ticker = gr.Textbox(label="Stock Ticker", value="MSFT") |
|
|
start_date = gr.Textbox(label="Start Date", value="2015-01-01") |
|
|
end_date = gr.Textbox(label="End Date", value=current_date) |
|
|
|
|
|
submit_button = gr.Button("Generate Chart") |
|
|
|
|
|
with gr.Row(): |
|
|
log_plot = gr.Plot(label="Logarithmic Stock Chart") |
|
|
|
|
|
submit_button.click( |
|
|
plot_interactive_logarithmic_stock_chart, |
|
|
inputs=[ticker, start_date, end_date], |
|
|
outputs=[log_plot] |
|
|
) |
|
|
|
|
|
|
|
|
iface.launch() |