|
|
import os |
|
|
import sys |
|
|
import importlib.util |
|
|
import site |
|
|
import json |
|
|
import torch |
|
|
import gradio as gr |
|
|
import torchaudio |
|
|
import numpy as np |
|
|
from huggingface_hub import snapshot_download, hf_hub_download |
|
|
import subprocess |
|
|
import uuid |
|
|
import soundfile as sf |
|
|
import spaces |
|
|
import librosa |
|
|
|
|
|
|
|
|
downloaded_resources = { |
|
|
"configs": False, |
|
|
"tokenizer_vq8192": False, |
|
|
"fmt_Vq8192ToMels": False, |
|
|
"vocoder": False |
|
|
} |
|
|
|
|
|
def install_espeak(): |
|
|
try: |
|
|
result = subprocess.run(["which", "espeak-ng"], capture_output=True, text=True) |
|
|
if result.returncode != 0: |
|
|
print("Installing espeak-ng...") |
|
|
subprocess.run(["apt-get", "update"], check=True) |
|
|
subprocess.run(["apt-get", "install", "-y", "espeak-ng", "espeak-ng-data"], check=True) |
|
|
except Exception as e: |
|
|
print(f"Error installing espeak-ng: {e}") |
|
|
|
|
|
install_espeak() |
|
|
|
|
|
def patch_langsegment_init(): |
|
|
try: |
|
|
spec = importlib.util.find_spec("LangSegment") |
|
|
if spec is None or spec.origin is None: return |
|
|
init_path = os.path.join(os.path.dirname(spec.origin), '__init__.py') |
|
|
with open(init_path, 'r') as f: lines = f.readlines() |
|
|
modified = False |
|
|
new_lines = [] |
|
|
target_line_prefix = "from .LangSegment import" |
|
|
for line in lines: |
|
|
if line.strip().startswith(target_line_prefix) and ('setLangfilters' in line or 'getLangfilters' in line): |
|
|
mod_line = line.replace(',setLangfilters', '').replace(',getLangfilters', '') |
|
|
mod_line = mod_line.replace('setLangfilters,', '').replace('getLangfilters,', '').rstrip(',') |
|
|
new_lines.append(mod_line + '\n') |
|
|
modified = True |
|
|
else: |
|
|
new_lines.append(line) |
|
|
if modified: |
|
|
with open(init_path, 'w') as f: f.writelines(new_lines) |
|
|
try: |
|
|
import LangSegment |
|
|
importlib.reload(LangSegment) |
|
|
except: pass |
|
|
except: pass |
|
|
|
|
|
patch_langsegment_init() |
|
|
|
|
|
if not os.path.exists("Amphion"): |
|
|
subprocess.run(["git", "clone", "https://github.com/open-mmlab/Amphion.git"]) |
|
|
os.chdir("Amphion") |
|
|
if os.path.dirname(os.path.abspath("Amphion")) not in sys.path: |
|
|
sys.path.append(os.path.dirname(os.path.abspath("Amphion"))) |
|
|
|
|
|
os.makedirs("wav", exist_ok=True) |
|
|
os.makedirs("ckpts/Vevo", exist_ok=True) |
|
|
|
|
|
from models.vc.vevo.vevo_utils import VevoInferencePipeline |
|
|
|
|
|
def save_audio_pcm16(waveform, output_path, sample_rate=24000): |
|
|
try: |
|
|
if isinstance(waveform, torch.Tensor): |
|
|
waveform = waveform.detach().cpu() |
|
|
if waveform.dim() == 2 and waveform.shape[0] == 1: |
|
|
waveform = waveform.squeeze(0) |
|
|
waveform = waveform.numpy() |
|
|
sf.write(output_path, waveform, sample_rate, subtype='PCM_16') |
|
|
except Exception as e: |
|
|
print(f"Save error: {e}") |
|
|
|
|
|
def setup_configs(): |
|
|
if downloaded_resources["configs"]: return |
|
|
config_path = "models/vc/vevo/config" |
|
|
os.makedirs(config_path, exist_ok=True) |
|
|
config_files = ["Vq8192ToMels.json", "Vocoder.json"] |
|
|
for file in config_files: |
|
|
file_path = f"{config_path}/{file}" |
|
|
if not os.path.exists(file_path): |
|
|
try: |
|
|
file_data = hf_hub_download(repo_id="amphion/Vevo", filename=f"config/{file}", repo_type="model") |
|
|
subprocess.run(["cp", file_data, file_path]) |
|
|
except Exception as e: print(f"Error downloading config {file}: {e}") |
|
|
downloaded_resources["configs"] = True |
|
|
|
|
|
setup_configs() |
|
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
|
|
|
|
inference_pipelines = {} |
|
|
|
|
|
def preload_all_resources(): |
|
|
setup_configs() |
|
|
global downloaded_content_style_tokenizer_path, downloaded_fmt_path, downloaded_vocoder_path |
|
|
if not downloaded_resources["tokenizer_vq8192"]: |
|
|
downloaded_content_style_tokenizer_path = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["tokenizer/vq8192/*"]) |
|
|
downloaded_resources["tokenizer_vq8192"] = True |
|
|
if not downloaded_resources["fmt_Vq8192ToMels"]: |
|
|
downloaded_fmt_path = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["acoustic_modeling/Vq8192ToMels/*"]) |
|
|
downloaded_resources["fmt_Vq8192ToMels"] = True |
|
|
if not downloaded_resources["vocoder"]: |
|
|
downloaded_vocoder_path = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["acoustic_modeling/Vocoder/*"]) |
|
|
downloaded_resources["vocoder"] = True |
|
|
|
|
|
downloaded_content_style_tokenizer_path = None |
|
|
downloaded_fmt_path = None |
|
|
downloaded_vocoder_path = None |
|
|
preload_all_resources() |
|
|
|
|
|
def get_pipeline(): |
|
|
if "timbre" in inference_pipelines: return inference_pipelines["timbre"] |
|
|
pipeline = VevoInferencePipeline( |
|
|
content_style_tokenizer_ckpt_path=os.path.join(downloaded_content_style_tokenizer_path, "tokenizer/vq8192"), |
|
|
fmt_cfg_path="./models/vc/vevo/config/Vq8192ToMels.json", |
|
|
fmt_ckpt_path=os.path.join(downloaded_fmt_path, "acoustic_modeling/Vq8192ToMels"), |
|
|
vocoder_cfg_path="./models/vc/vevo/config/Vocoder.json", |
|
|
vocoder_ckpt_path=os.path.join(downloaded_vocoder_path, "acoustic_modeling/Vocoder"), |
|
|
device=device, |
|
|
) |
|
|
inference_pipelines["timbre"] = pipeline |
|
|
return pipeline |
|
|
|
|
|
|
|
|
def find_advanced_split_points(audio_np, sr): |
|
|
""" |
|
|
پیدا کردن نقاط برش با استراتژی فالبک (Fallback Strategy): |
|
|
۱. تلاش برای پیدا کردن سکوت در بازه ۸ تا ۱۲ ثانیه. |
|
|
۲. اگر نشد، تلاش در بازه وسیعتر ۶ تا ۱۴ ثانیه. |
|
|
۳. انتخاب نقطه با کمترین انرژی (حتی اگر سکوت نباشد). |
|
|
۴. تنظیم دقیق روی نزدیکترین Zero-Crossing. |
|
|
""" |
|
|
total_samples = len(audio_np) |
|
|
|
|
|
|
|
|
MIN_PREFERRED = 8.0 |
|
|
MAX_PREFERRED = 12.0 |
|
|
MIN_HARD = 6.0 |
|
|
MAX_HARD = 15.0 |
|
|
|
|
|
split_points = [0] |
|
|
current_pos = 0 |
|
|
|
|
|
hop_length = 512 |
|
|
frame_length = 1024 |
|
|
|
|
|
while current_pos < total_samples: |
|
|
|
|
|
start_search = current_pos + int(MIN_PREFERRED * sr) |
|
|
end_search = current_pos + int(MAX_PREFERRED * sr) |
|
|
|
|
|
|
|
|
if start_search >= total_samples: |
|
|
split_points.append(total_samples) |
|
|
break |
|
|
|
|
|
end_search = min(end_search, total_samples) |
|
|
|
|
|
|
|
|
if end_search - start_search < sr: |
|
|
|
|
|
start_search = current_pos + int(MIN_HARD * sr) |
|
|
end_search = current_pos + int(MAX_HARD * sr) |
|
|
start_search = min(start_search, total_samples) |
|
|
end_search = min(end_search, total_samples) |
|
|
|
|
|
|
|
|
region = audio_np[start_search:end_search] |
|
|
|
|
|
if len(region) == 0: |
|
|
split_points.append(total_samples) |
|
|
break |
|
|
|
|
|
|
|
|
rms = librosa.feature.rms(y=region, frame_length=frame_length, hop_length=hop_length)[0] |
|
|
|
|
|
|
|
|
min_idx = np.argmin(rms) |
|
|
local_cut_sample = min_idx * hop_length |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cut_absolute_approx = start_search + local_cut_sample |
|
|
|
|
|
|
|
|
search_radius = 500 |
|
|
zc_start = max(0, cut_absolute_approx - search_radius) |
|
|
zc_end = min(total_samples, cut_absolute_approx + search_radius) |
|
|
|
|
|
zc_region = audio_np[zc_start:zc_end] |
|
|
|
|
|
|
|
|
|
|
|
zero_crossings = np.where(np.diff(np.signbit(zc_region)))[0] |
|
|
|
|
|
if len(zero_crossings) > 0: |
|
|
|
|
|
closest_zc = zero_crossings[np.argmin(np.abs(zero_crossings - search_radius))] |
|
|
best_cut_absolute = zc_start + closest_zc |
|
|
else: |
|
|
|
|
|
best_cut_absolute = cut_absolute_approx |
|
|
|
|
|
split_points.append(best_cut_absolute) |
|
|
current_pos = best_cut_absolute |
|
|
|
|
|
return split_points |
|
|
|
|
|
@spaces.GPU() |
|
|
def vevo_timbre(content_wav, reference_wav): |
|
|
session_id = str(uuid.uuid4())[:8] |
|
|
temp_content_path = f"wav/c_{session_id}.wav" |
|
|
temp_reference_path = f"wav/r_{session_id}.wav" |
|
|
output_path = f"wav/out_{session_id}.wav" |
|
|
|
|
|
if content_wav is None or reference_wav is None: |
|
|
raise ValueError("Please upload audio files") |
|
|
|
|
|
try: |
|
|
SR = 24000 |
|
|
|
|
|
|
|
|
if isinstance(content_wav, tuple): |
|
|
content_sr, content_data = content_wav if isinstance(content_wav[0], int) else (content_wav[1], content_wav[0]) |
|
|
else: |
|
|
content_sr, content_data = content_wav |
|
|
if len(content_data.shape) > 1: content_data = np.mean(content_data, axis=1) |
|
|
|
|
|
content_tensor = torch.FloatTensor(content_data).unsqueeze(0) |
|
|
if content_sr != SR: |
|
|
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, SR) |
|
|
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95 |
|
|
content_full_np = content_tensor.squeeze().numpy() |
|
|
|
|
|
|
|
|
if isinstance(reference_wav, tuple): |
|
|
ref_sr, ref_data = reference_wav if isinstance(reference_wav[0], int) else (reference_wav[1], reference_wav[0]) |
|
|
else: |
|
|
ref_sr, ref_data = reference_wav |
|
|
if len(ref_data.shape) > 1: ref_data = np.mean(ref_data, axis=1) |
|
|
|
|
|
ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0) |
|
|
if ref_sr != SR: |
|
|
ref_tensor = torchaudio.functional.resample(ref_tensor, ref_sr, SR) |
|
|
ref_tensor = ref_tensor / (torch.max(torch.abs(ref_tensor)) + 1e-6) * 0.95 |
|
|
if ref_tensor.shape[1] > SR * 20: ref_tensor = ref_tensor[:, :SR * 20] |
|
|
save_audio_pcm16(ref_tensor, temp_reference_path, SR) |
|
|
|
|
|
pipeline = get_pipeline() |
|
|
|
|
|
|
|
|
print(f"[{session_id}] Finding best energy split points (Zero-Crossing)...") |
|
|
split_points = find_advanced_split_points(content_full_np, SR) |
|
|
print(f"[{session_id}] Split into {len(split_points)-1} chunks.") |
|
|
|
|
|
final_output = [] |
|
|
PADDING_SAMPLES = int(2.5 * SR) |
|
|
|
|
|
for i in range(len(split_points) - 1): |
|
|
start = split_points[i] |
|
|
end = split_points[i+1] |
|
|
|
|
|
read_start = max(0, start - PADDING_SAMPLES) |
|
|
read_end = end |
|
|
|
|
|
chunk_input = content_full_np[read_start:read_end] |
|
|
save_audio_pcm16(torch.FloatTensor(chunk_input).unsqueeze(0), temp_content_path, SR) |
|
|
|
|
|
try: |
|
|
gen = pipeline.inference_fm( |
|
|
src_wav_path=temp_content_path, |
|
|
timbre_ref_wav_path=temp_reference_path, |
|
|
flow_matching_steps=32, |
|
|
) |
|
|
if torch.isnan(gen).any(): gen = torch.nan_to_num(gen, nan=0.0) |
|
|
gen_np = gen.detach().cpu().squeeze().numpy() |
|
|
|
|
|
trim_amount = start - read_start |
|
|
|
|
|
if len(gen_np) > trim_amount: |
|
|
valid_audio = gen_np[trim_amount:] |
|
|
|
|
|
|
|
|
if len(final_output) > 0: |
|
|
|
|
|
|
|
|
fade_len = int(0.03 * SR) |
|
|
|
|
|
if len(final_output[-1]) > fade_len and len(valid_audio) > fade_len: |
|
|
fade_out = np.linspace(1, 0, fade_len) |
|
|
fade_in = np.linspace(0, 1, fade_len) |
|
|
|
|
|
prev_tail = final_output[-1][-fade_len:] |
|
|
curr_head = valid_audio[:fade_len] |
|
|
|
|
|
mixed = (prev_tail * fade_out) + (curr_head * fade_in) |
|
|
final_output[-1][-fade_len:] = mixed |
|
|
valid_audio = valid_audio[fade_len:] |
|
|
|
|
|
final_output.append(valid_audio) |
|
|
|
|
|
except Exception as e: |
|
|
print(f"Error segment {i}: {e}") |
|
|
|
|
|
final_output.append(np.zeros(end - start)) |
|
|
|
|
|
if len(final_output) > 0: |
|
|
full_audio = np.concatenate(final_output) |
|
|
else: |
|
|
full_audio = np.zeros(SR) |
|
|
|
|
|
save_audio_pcm16(full_audio, output_path, SR) |
|
|
return output_path |
|
|
|
|
|
finally: |
|
|
if os.path.exists(temp_content_path): os.remove(temp_content_path) |
|
|
if os.path.exists(temp_reference_path): os.remove(temp_reference_path) |
|
|
|
|
|
with gr.Blocks(title="Vevo-Timbre (Pro Logic)") as demo: |
|
|
gr.Markdown("## Vevo-Timbre: Zero-Shot Voice Conversion") |
|
|
gr.Markdown("Robust Splitting: Uses Minimum Energy + Zero Crossing detection to handle fast speech without glitches.") |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
timbre_content = gr.Audio(label="Source Audio", type="numpy") |
|
|
timbre_reference = gr.Audio(label="Target Timbre", type="numpy") |
|
|
timbre_button = gr.Button("Generate", variant="primary") |
|
|
with gr.Column(): |
|
|
timbre_output = gr.Audio(label="Result") |
|
|
|
|
|
timbre_button.click(vevo_timbre, inputs=[timbre_content, timbre_reference], outputs=timbre_output) |
|
|
|
|
|
demo.launch() |