Papaflessas's picture
Deploy Signal Generator app
3fe0726
"""
Stock Metrics Calculator
Combines all individual metric functions and fetches data from yfinance
Returns comprehensive DataFrame with all calculated metrics
"""
import yfinance as yf
import pandas as pd
import numpy as np
from typing import Dict, List, Optional, Tuple
from datetime import datetime
import warnings
warnings.filterwarnings('ignore')
# Import all metric calculation functions
from fundamental_analysis.metrics import *
class StockMetricsCalculator:
"""Calculate comprehensive metrics for a single stock"""
def __init__(self, ticker: str):
"""
Initialize calculator for a ticker
Args:
ticker: Stock ticker symbol (e.g., 'AAPL')
"""
self.ticker = ticker.upper()
self.stock = yf.Ticker(self.ticker)
self.data_fetched = False
self.missing_metrics = []
# Raw data containers
self.info = {}
self.financials = {}
self.balance_sheet = {}
self.cashflow = {}
self.quarterly_financials = {}
self.quarterly_balance = {}
self.quarterly_cashflow = {}
def fetch_data(self) -> bool:
"""
Fetch all available data from yfinance
Returns:
True if successful, False otherwise
"""
try:
# Get company info
self.info = self.stock.info
# Get financial statements
self.financials = self.stock.financials
self.balance_sheet = self.stock.balance_sheet
self.cashflow = self.stock.cashflow
# Get quarterly statements
self.quarterly_financials = self.stock.quarterly_financials
self.quarterly_balance = self.stock.quarterly_balance_sheet
self.quarterly_cashflow = self.stock.quarterly_cashflow
self.data_fetched = True
print(f"✓ Data fetched successfully for {self.ticker}")
return True
except Exception as e:
print(f"✗ Error fetching data for {self.ticker}: {str(e)}")
return False
def _get_from_statement(self, statement: pd.DataFrame, key: str, period: int = 0) -> Optional[float]:
"""
Safely get value from financial statement
Args:
statement: DataFrame from yfinance
key: Row name to extract
period: Column index (0 = most recent)
Returns:
Value or None if not found
"""
try:
if statement.empty:
return None
if key in statement.index:
values = statement.loc[key]
if not values.empty and period < len(values):
val = values.iloc[period]
return float(val) if pd.notna(val) else None
return None
except:
return None
def _calculate_ttm(self, quarterly_statement: pd.DataFrame, key: str) -> Optional[float]:
"""Calculate TTM (Trailing Twelve Months) from quarterly data"""
try:
if quarterly_statement.empty or key not in quarterly_statement.index:
return None
values = quarterly_statement.loc[key].iloc[:4] # Last 4 quarters
values = values.replace({"-": None})
values = values.dropna()
if len(values) == 4 and values.notna().all():
return float(values.sum())
return None
except:
return None
def calculate_all_metrics(self) -> pd.DataFrame:
"""
Calculate all available metrics
Returns:
DataFrame with metric names, values, formulas, and status
"""
if not self.data_fetched:
self.fetch_data()
metrics_data = []
# ============================================================================
# EXTRACT RAW DATA
# ============================================================================
print("\nExtracting raw financial data...")
# Price and shares
price = self.info.get('currentPrice') or self.info.get('regularMarketPrice')
diluted_shares = self.info.get('sharesOutstanding')
# Income statement (use TTM when available)
revenue = self._calculate_ttm(self.quarterly_financials, 'Total Revenue') or \
self._get_from_statement(self.financials, 'Total Revenue')
revenue_prior = self._get_from_statement(self.financials, 'Total Revenue', 1)
cogs = self._calculate_ttm(self.quarterly_financials, 'Cost Of Revenue') or \
self._get_from_statement(self.financials, 'Cost Of Revenue')
gross_profit = self._calculate_ttm(self.quarterly_financials, 'Gross Profit') or \
self._get_from_statement(self.financials, 'Gross Profit')
ebit = self._calculate_ttm(self.quarterly_financials, 'EBIT') or \
self._get_from_statement(self.financials, 'EBIT')
ebitda = self.info.get('ebitda') or \
self._calculate_ttm(self.quarterly_financials, 'EBITDA') or \
self._get_from_statement(self.financials, 'EBITDA')
net_income = self._calculate_ttm(self.quarterly_financials, 'Net Income') or \
self._get_from_statement(self.financials, 'Net Income')
net_income_prior = self._get_from_statement(self.financials, 'Net Income', 1)
interest_expense = abs(self._calculate_ttm(self.quarterly_financials, 'Interest Expense') or \
self._get_from_statement(self.financials, 'Interest Expense') or 0)
# EPS
eps_ttm = self.info.get('trailingEps')
eps_forward = self.info.get('forwardEps')
eps_prior = self.info.get('trailingEps') # Would need historical data for accurate prior
# Balance sheet
total_assets = self._get_from_statement(self.balance_sheet, 'Total Assets')
current_assets = self._get_from_statement(self.balance_sheet, 'Current Assets')
current_liabilities = self._get_from_statement(self.balance_sheet, 'Current Liabilities')
total_debt = self.info.get('totalDebt') or \
(self._get_from_statement(self.balance_sheet, 'Long Term Debt') or 0) + \
(self._get_from_statement(self.balance_sheet, 'Short Term Debt') or 0)
cash = self._get_from_statement(self.balance_sheet, 'Cash And Cash Equivalents') or 0
cash_and_st_investments = self._get_from_statement(self.balance_sheet, 'Cash Cash Equivalents And Short Term Investments') or cash
total_equity = self._get_from_statement(self.balance_sheet, 'Total Equity Gross Minority Interest') or \
self._get_from_statement(self.balance_sheet, 'Stockholders Equity')
total_equity_prior = self._get_from_statement(self.balance_sheet, 'Stockholders Equity', 1)
receivables = self._get_from_statement(self.balance_sheet, 'Receivables') or 0
inventory = self._get_from_statement(self.balance_sheet, 'Inventory') or 0
book_value_per_share = self.info.get('bookValue')
# Cash flow
cfo = self._calculate_ttm(self.quarterly_cashflow, 'Operating Cash Flow') or \
self._get_from_statement(self.cashflow, 'Operating Cash Flow')
capex = abs(self._calculate_ttm(self.quarterly_cashflow, 'Capital Expenditure') or \
self._get_from_statement(self.cashflow, 'Capital Expenditure') or 0)
dividends_paid = abs(self._get_from_statement(self.cashflow, 'Cash Dividends Paid') or 0)
stock_repurchased = abs(self._get_from_statement(self.cashflow, 'Repurchase Of Capital Stock') or 0)
# Tax rate
tax_rate = self.info.get('effectiveTaxRate') or 0.21 # Default to 21% if not available
# Growth rates
earnings_growth = self.info.get('earningsGrowth') or 0
revenue_growth_rate = self.info.get('revenueGrowth') or 0
# ============================================================================
# CALCULATE DERIVED VALUES
# ============================================================================
# Market cap and EV
market_cap = calculate_market_cap(price, diluted_shares) if (price and diluted_shares) else self.info.get('marketCap')
enterprise_value = calculate_enterprise_value(market_cap, total_debt, cash) if market_cap else self.info.get('enterpriseValue')
# Free cash flow
free_cash_flow = calculate_free_cash_flow(cfo, capex) if cfo else None
# Averages for ratio calculations
avg_equity = calculate_average(total_equity, total_equity_prior) if (total_equity and total_equity_prior) else total_equity
# Invested capital
invested_capital = calculate_invested_capital(total_equity, total_debt, cash) if (total_equity and total_debt) else None
# ============================================================================
# CALCULATE ALL METRICS
# ============================================================================
print("Calculating metrics...")
# --- 1. VALUATION METRICS ---
metrics_data.append({
'Category': 'Valuation',
'Metric': 'Market Capitalization',
'Value': market_cap,
'Formula': 'Price × Diluted Shares',
'Status': 'Available' if market_cap else 'Missing'
})
metrics_data.append({
'Category': 'Valuation',
'Metric': 'Enterprise Value (EV)',
'Value': enterprise_value,
'Formula': 'Market Cap + Total Debt - Cash',
'Status': 'Available' if enterprise_value else 'Missing'
})
pe_ratio = calculate_pe_ratio(price, eps_ttm)
metrics_data.append({
'Category': 'Valuation',
'Metric': 'P/E Ratio (TTM)',
'Value': pe_ratio,
'Formula': 'Price / EPS',
'Status': 'Available' if pe_ratio else 'Missing',
'Threshold': '< sector median = undervalued'
})
pe_forward = calculate_pe_ratio(price, eps_forward)
metrics_data.append({
'Category': 'Valuation',
'Metric': 'P/E Ratio (Forward)',
'Value': pe_forward,
'Formula': 'Price / Forward EPS',
'Status': 'Available' if pe_forward else 'Missing',
'Threshold': 'Use for valuation comparisons'
})
peg_ratio = calculate_peg_ratio(pe_forward or pe_ratio, earnings_growth)
metrics_data.append({
'Category': 'Valuation',
'Metric': 'PEG Ratio',
'Value': peg_ratio,
'Formula': 'P/E / (EPS Growth % × 100)',
'Status': 'Available' if peg_ratio else 'Missing',
'Threshold': '< 0.8 = BUY, 0.8-1.2 = HOLD, > 1.5 = SELL'
})
ev_ebitda = calculate_ev_ebitda(enterprise_value, ebitda)
metrics_data.append({
'Category': 'Valuation',
'Metric': 'EV/EBITDA',
'Value': ev_ebitda,
'Formula': 'Enterprise Value / EBITDA',
'Status': 'Available' if ev_ebitda else 'Missing',
'Threshold': 'Compare to sector median'
})
price_to_fcf = calculate_price_to_fcf(market_cap, free_cash_flow)
metrics_data.append({
'Category': 'Valuation',
'Metric': 'Price / FCF',
'Value': price_to_fcf,
'Formula': 'Market Cap / Free Cash Flow',
'Status': 'Available' if price_to_fcf else 'Missing'
})
fcf_yield_eq = calculate_fcf_yield_equity(free_cash_flow, market_cap)
metrics_data.append({
'Category': 'Valuation',
'Metric': 'FCF Yield (Equity) %',
'Value': fcf_yield_eq,
'Formula': '(FCF / Market Cap) × 100',
'Status': 'Available' if fcf_yield_eq else 'Missing',
'Threshold': '> 6% = BUY, 4-6% = HOLD, < 3% = SELL',
'Priority': 'HIGHEST'
})
fcf_yield_ev = calculate_fcf_yield_enterprise(free_cash_flow, enterprise_value)
metrics_data.append({
'Category': 'Valuation',
'Metric': 'FCF Yield (Enterprise) %',
'Value': fcf_yield_ev,
'Formula': '(FCF / EV) × 100',
'Status': 'Available' if fcf_yield_ev else 'Missing',
'Threshold': '> 6% = BUY (preferred metric)',
'Priority': 'HIGHEST'
})
pb_ratio = calculate_price_to_book(price, book_value_per_share)
metrics_data.append({
'Category': 'Valuation',
'Metric': 'Price / Book',
'Value': pb_ratio,
'Formula': 'Price / Book Value per Share',
'Status': 'Available' if pb_ratio else 'Missing'
})
# --- 2. PROFITABILITY & MARGINS ---
gross_margin = calculate_gross_margin(revenue, cogs)
metrics_data.append({
'Category': 'Profitability',
'Metric': 'Gross Margin %',
'Value': gross_margin,
'Formula': '((Revenue - COGS) / Revenue) × 100',
'Status': 'Available' if gross_margin else 'Missing',
'Threshold': '> 40% good, > 60% excellent'
})
ebitda_margin = calculate_ebitda_margin(ebitda, revenue)
metrics_data.append({
'Category': 'Profitability',
'Metric': 'EBITDA Margin %',
'Value': ebitda_margin,
'Formula': '(EBITDA / Revenue) × 100',
'Status': 'Available' if ebitda_margin else 'Missing',
'Threshold': '> 20% excellent'
})
ebit_margin = calculate_ebit_margin(ebit, revenue)
metrics_data.append({
'Category': 'Profitability',
'Metric': 'EBIT Margin %',
'Value': ebit_margin,
'Formula': '(EBIT / Revenue) × 100',
'Status': 'Available' if ebit_margin else 'Missing'
})
net_margin = calculate_net_margin(net_income, revenue)
metrics_data.append({
'Category': 'Profitability',
'Metric': 'Net Margin %',
'Value': net_margin,
'Formula': '(Net Income / Revenue) × 100',
'Status': 'Available' if net_margin else 'Missing',
'Threshold': '> 10% good'
})
# --- 3. CASH FLOW METRICS ---
metrics_data.append({
'Category': 'Cash Flow',
'Metric': 'Free Cash Flow',
'Value': free_cash_flow,
'Formula': 'CFO - CapEx',
'Status': 'Available' if free_cash_flow else 'Missing',
'Threshold': 'Must be positive',
'Priority': 'CRITICAL'
})
fcf_per_share = calculate_fcf_per_share(free_cash_flow, diluted_shares)
metrics_data.append({
'Category': 'Cash Flow',
'Metric': 'FCF per Share',
'Value': fcf_per_share,
'Formula': 'FCF / Diluted Shares',
'Status': 'Available' if fcf_per_share else 'Missing'
})
cash_conversion = calculate_cash_conversion(cfo, net_income)
metrics_data.append({
'Category': 'Cash Flow',
'Metric': 'Cash Conversion Ratio',
'Value': cash_conversion,
'Formula': 'CFO / Net Income',
'Status': 'Available' if cash_conversion else 'Missing',
'Threshold': '> 1.0 = quality earnings, < 1.0 RED FLAG',
'Priority': 'HIGH'
})
# --- 4. LIQUIDITY & SOLVENCY ---
current_ratio = calculate_current_ratio(current_assets, current_liabilities)
metrics_data.append({
'Category': 'Liquidity',
'Metric': 'Current Ratio',
'Value': current_ratio,
'Formula': 'Current Assets / Current Liabilities',
'Status': 'Available' if current_ratio else 'Missing',
'Threshold': '> 1.5 good'
})
quick_ratio = calculate_quick_ratio(cash, 0, receivables, current_liabilities)
metrics_data.append({
'Category': 'Liquidity',
'Metric': 'Quick Ratio',
'Value': quick_ratio,
'Formula': '(Cash + Receivables) / Current Liabilities',
'Status': 'Available' if quick_ratio else 'Missing'
})
net_debt_ebitda = calculate_net_debt_to_ebitda(total_debt, cash, ebitda)
metrics_data.append({
'Category': 'Solvency',
'Metric': 'Net Debt / EBITDA',
'Value': net_debt_ebitda,
'Formula': '(Total Debt - Cash) / EBITDA',
'Status': 'Available' if net_debt_ebitda else 'Missing',
'Threshold': '< 1 = Low risk, 1-3 = Moderate, > 3 = High risk',
'Priority': 'HIGH'
})
interest_cov = calculate_interest_coverage(ebit, interest_expense)
metrics_data.append({
'Category': 'Solvency',
'Metric': 'Interest Coverage',
'Value': interest_cov,
'Formula': 'EBIT / Interest Expense',
'Status': 'Available' if interest_cov else 'Missing',
'Threshold': '> 3x safe, < 2x risky'
})
debt_to_equity = calculate_debt_to_equity(total_debt, total_equity)
metrics_data.append({
'Category': 'Solvency',
'Metric': 'Debt / Equity',
'Value': debt_to_equity,
'Formula': 'Total Debt / Total Equity',
'Status': 'Available' if debt_to_equity else 'Missing'
})
# --- 5. RETURNS & EFFICIENCY ---
roe = calculate_roe(net_income, avg_equity)
metrics_data.append({
'Category': 'Returns',
'Metric': 'Return on Equity (ROE) %',
'Value': roe,
'Formula': '(Net Income / Avg Equity) × 100',
'Status': 'Available' if roe else 'Missing',
'Threshold': '> 15% good, > 20% excellent',
'Priority': 'VERY HIGH'
})
roa = calculate_roa(net_income, total_assets)
metrics_data.append({
'Category': 'Returns',
'Metric': 'Return on Assets (ROA) %',
'Value': roa,
'Formula': '(Net Income / Total Assets) × 100',
'Status': 'Available' if roa else 'Missing'
})
roic = calculate_roic(ebit, tax_rate, invested_capital)
metrics_data.append({
'Category': 'Returns',
'Metric': 'Return on Invested Capital (ROIC) %',
'Value': roic,
'Formula': '(EBIT × (1 - Tax Rate) / Invested Capital) × 100',
'Status': 'Available' if roic else 'Missing',
'Threshold': '> 10% good, > 15% excellent',
'Priority': 'VERY HIGH - Best quality indicator'
})
# --- 6. GROWTH METRICS ---
rev_growth = calculate_revenue_growth(revenue, revenue_prior)
metrics_data.append({
'Category': 'Growth',
'Metric': 'Revenue Growth (YoY) %',
'Value': rev_growth or (revenue_growth_rate * 100),
'Formula': '((Current Rev - Prior Rev) / Prior Rev) × 100',
'Status': 'Available' if (rev_growth or revenue_growth_rate) else 'Missing',
'Threshold': '> 10% good, > 20% excellent'
})
eps_growth_calc = calculate_eps_growth(eps_ttm, eps_prior)
metrics_data.append({
'Category': 'Growth',
'Metric': 'EPS Growth (YoY) %',
'Value': eps_growth_calc or (earnings_growth * 100),
'Formula': '((Current EPS - Prior EPS) / Prior EPS) × 100',
'Status': 'Available' if (eps_growth_calc or earnings_growth) else 'Missing',
'Priority': 'HIGH'
})
# --- 7. CAPITAL ALLOCATION ---
payout_ratio = calculate_payout_ratio(dividends_paid, net_income)
metrics_data.append({
'Category': 'Capital Allocation',
'Metric': 'Payout Ratio %',
'Value': payout_ratio,
'Formula': '(Dividends / Net Income) × 100',
'Status': 'Available' if payout_ratio else 'Missing',
'Threshold': '< 60% sustainable'
})
buyback_yield = calculate_buyback_yield(stock_repurchased, market_cap)
metrics_data.append({
'Category': 'Capital Allocation',
'Metric': 'Buyback Yield %',
'Value': buyback_yield,
'Formula': '(Buyback Cash / Market Cap) × 100',
'Status': 'Available' if buyback_yield else 'Missing'
})
total_payout = calculate_total_payout_ratio(dividends_paid, stock_repurchased, net_income)
metrics_data.append({
'Category': 'Capital Allocation',
'Metric': 'Total Payout Ratio %',
'Value': total_payout,
'Formula': '((Dividends + Buybacks) / Net Income) × 100',
'Status': 'Available' if total_payout else 'Missing'
})
# Create DataFrame
df = pd.DataFrame(metrics_data)
# Track missing metrics
self.missing_metrics = df[df['Status'] == 'Missing']['Metric'].tolist()
print(f"\n✓ Calculated {len(df)} metrics")
print(f"✓ Available: {len(df[df['Status'] == 'Available'])}")
print(f"✗ Missing: {len(self.missing_metrics)}")
return df
def get_summary_statistics(self, df: pd.DataFrame) -> Dict:
"""Generate summary statistics about the metrics"""
total = len(df)
available = len(df[df['Status'] == 'Available'])
missing = total - available
return {
'ticker': self.ticker,
'total_metrics': total,
'available_metrics': available,
'missing_metrics': missing,
'coverage_percentage': (available / total) * 100 if total > 0 else 0,
'missing_metric_list': self.missing_metrics
}
def calculate_metrics_for_ticker(ticker: str) -> Tuple[pd.DataFrame, Dict]:
"""
Main function to calculate all metrics for a ticker
Args:
ticker: Stock ticker symbol
Returns:
Tuple of (metrics_dataframe, summary_statistics)
"""
calculator = StockMetricsCalculator(ticker)
if not calculator.fetch_data():
return pd.DataFrame(), {}
metrics_df = calculator.calculate_all_metrics()
summary = calculator.get_summary_statistics(metrics_df)
return metrics_df, summary
if __name__ == "__main__":
# Test with a sample ticker
test_ticker = "AAPL"
print(f"Testing with {test_ticker}...")
print("=" * 80)
metrics_df, summary = calculate_metrics_for_ticker(test_ticker)
if not metrics_df.empty:
print("\n" + "=" * 80)
print("SUMMARY STATISTICS")
print("=" * 80)
for key, value in summary.items():
if key != 'missing_metric_list':
print(f"{key}: {value}")
print("\n" + "=" * 80)
print("SAMPLE METRICS (First 10)")
print("=" * 80)
print(metrics_df[['Category', 'Metric', 'Value', 'Status']].head(10).to_string(index=False))
print("\n" + "=" * 80)
print("HIGH PRIORITY METRICS")
print("=" * 80)
priority_metrics = metrics_df[metrics_df['Priority'].notna()][['Metric', 'Value', 'Threshold', 'Priority']]
print(priority_metrics.to_string(index=False))
if summary['missing_metrics'] > 0:
print("\n" + "=" * 80)
print("MISSING METRICS")
print("=" * 80)
for metric in summary['missing_metric_list']:
print(f" - {metric}")
# Save to CSV
output_file = f"{test_ticker}_metrics.csv"
metrics_df.to_csv(output_file, index=False)
print(f"\n✓ Metrics saved to {output_file}")