Papaflessas's picture
Deploy Signal Generator app
3fe0726
"""
Valuation engine for stock analysis.
Implements DCF, comparable multiples, and scenario analysis.
"""
import pandas as pd
import numpy as np
from typing import Dict, List, Optional, Tuple
class ValuationEngine:
"""Performs stock valuation using multiple methodologies"""
def __init__(self, financial_data: Dict, analysis_results: Dict):
"""
Initialize valuation engine
Args:
financial_data: Complete dataset from FinancialDataFetcher
analysis_results: Results from FinancialAnalyzer
"""
self.ticker = financial_data.get('ticker')
self.metrics = financial_data.get('metrics', {})
self.statements = financial_data.get('financial_statements', {})
self.sector_metrics = financial_data.get('sector_metrics', {})
self.analysis = analysis_results
def calculate_intrinsic_value_dcf(self,
growth_rate: float = 0.10,
terminal_growth: float = 0.02,
discount_rate: float = 0.10,
years: int = 5) -> Dict:
"""
Calculate intrinsic value using DCF method
Args:
growth_rate: Expected FCF growth rate
terminal_growth: Perpetual growth rate
discount_rate: WACC / required return
years: Forecast period
Returns:
DCF valuation results
"""
results = {
'method': 'DCF',
'assumptions': {
'growth_rate': growth_rate,
'terminal_growth': terminal_growth,
'discount_rate': discount_rate,
'forecast_years': years
}
}
try:
# Get current FCF
current_fcf = self.metrics.get('free_cash_flow', 0)
if current_fcf <= 0:
results['error'] = 'Negative or zero FCF - DCF not applicable'
return results
# Project FCF
projected_fcf = []
pv_fcf = []
for year in range(1, years + 1):
fcf = current_fcf * ((1 + growth_rate) ** year)
pv = fcf / ((1 + discount_rate) ** year)
projected_fcf.append(fcf)
pv_fcf.append(pv)
# Terminal value
terminal_fcf = projected_fcf[-1] * (1 + terminal_growth)
terminal_value = terminal_fcf / (discount_rate - terminal_growth)
pv_terminal = terminal_value / ((1 + discount_rate) ** years)
# Enterprise value
enterprise_value = sum(pv_fcf) + pv_terminal
# Equity value
net_debt = self.metrics.get('total_debt', 0) - self.metrics.get('total_cash', 0)
equity_value = enterprise_value - net_debt
# Per share value
shares_outstanding = self.metrics.get('shares_outstanding', 1)
fair_value_per_share = equity_value / shares_outstanding if shares_outstanding > 0 else 0
current_price = self.metrics.get('current_price', 0)
upside = ((fair_value_per_share - current_price) / current_price) * 100 if current_price > 0 else 0
results.update({
'current_fcf': current_fcf,
'pv_cash_flows': sum(pv_fcf),
'pv_terminal_value': pv_terminal,
'enterprise_value': enterprise_value,
'equity_value': equity_value,
'fair_value_per_share': fair_value_per_share,
'current_price': current_price,
'upside_percent': upside,
'recommendation': 'BUY' if upside > 15 else 'HOLD' if upside > -10 else 'SELL'
})
except Exception as e:
results['error'] = f'DCF calculation error: {str(e)}'
return results
def calculate_relative_valuation(self) -> Dict:
"""
Calculate valuation using comparable multiples
Returns:
Relative valuation results
"""
results = {
'method': 'Comparable Multiples'
}
current_price = self.metrics.get('current_price', 0)
# P/E based valuation
if self.metrics.get('trailing_pe') and self.metrics.get('eps_trailing'):
sector_pe = self.sector_metrics.get('trailing_pe_median')
if sector_pe:
eps = self.metrics.get('eps_trailing')
fair_value_pe = eps * sector_pe
pe_upside = ((fair_value_pe - current_price) / current_price) * 100 if current_price > 0 else 0
results['pe_valuation'] = {
'company_pe': self.metrics.get('trailing_pe'),
'sector_pe_median': sector_pe,
'eps': eps,
'fair_value': fair_value_pe,
'current_price': current_price,
'upside_percent': pe_upside
}
# PEG based valuation
if self.metrics.get('peg_ratio') and self.metrics.get('eps_forward'):
sector_peg = self.sector_metrics.get('peg_ratio_median')
earnings_growth = self.analysis.get('growth_analysis', {}).get('earnings_growth_ttm', 0)
if sector_peg and earnings_growth:
eps_forward = self.metrics.get('eps_forward')
fair_pe = sector_peg * (earnings_growth * 100)
fair_value_peg = eps_forward * fair_pe
peg_upside = ((fair_value_peg - current_price) / current_price) * 100 if current_price > 0 else 0
results['peg_valuation'] = {
'company_peg': self.metrics.get('peg_ratio'),
'sector_peg_median': sector_peg,
'earnings_growth': earnings_growth,
'fair_pe': fair_pe,
'fair_value': fair_value_peg,
'current_price': current_price,
'upside_percent': peg_upside
}
# P/B based valuation
if self.metrics.get('price_to_book') and self.metrics.get('book_value_per_share'):
sector_pb = self.sector_metrics.get('price_to_book_median')
if sector_pb:
book_value = self.metrics.get('book_value_per_share')
fair_value_pb = book_value * sector_pb
pb_upside = ((fair_value_pb - current_price) / current_price) * 100 if current_price > 0 else 0
results['pb_valuation'] = {
'company_pb': self.metrics.get('price_to_book'),
'sector_pb_median': sector_pb,
'book_value_per_share': book_value,
'fair_value': fair_value_pb,
'current_price': current_price,
'upside_percent': pb_upside
}
# Calculate average upside from available methods
upsides = []
if 'pe_valuation' in results:
upsides.append(results['pe_valuation']['upside_percent'])
if 'peg_valuation' in results:
upsides.append(results['peg_valuation']['upside_percent'])
if 'pb_valuation' in results:
upsides.append(results['pb_valuation']['upside_percent'])
if upsides:
avg_upside = sum(upsides) / len(upsides)
results['average_upside'] = avg_upside
results['recommendation'] = 'BUY' if avg_upside > 15 else 'HOLD' if avg_upside > -10 else 'SELL'
return results
def scenario_analysis(self) -> Dict:
"""
Perform bull/base/bear scenario valuation
Returns:
Scenario analysis results
"""
# Base case: use historical/current growth rates
base_growth = self.analysis.get('growth_analysis', {}).get('revenue_growth_ttm', 0.08)
base_growth = max(0.05, min(base_growth, 0.20)) # Cap between 5% and 20%
scenarios = {}
# Bear case: 20% lower growth, higher risk (lower valuation)
bear_growth = base_growth * 0.8
scenarios['bear'] = self.calculate_intrinsic_value_dcf(
growth_rate=bear_growth,
discount_rate=0.12 # Higher discount rate = higher risk = lower valuation
)
# Base case
scenarios['base'] = self.calculate_intrinsic_value_dcf(
growth_rate=base_growth,
discount_rate=0.10
)
# Bull case: 20% higher growth, lower risk (higher valuation)
bull_growth = base_growth * 1.2
scenarios['bull'] = self.calculate_intrinsic_value_dcf(
growth_rate=bull_growth,
discount_rate=0.08 # Lower discount rate = lower risk = higher valuation
)
# Summary
results = {
'scenarios': scenarios,
'current_price': self.metrics.get('current_price', 0)
}
# Calculate price ranges
bear_price = scenarios['bear'].get('fair_value_per_share', 0)
base_price = scenarios['base'].get('fair_value_per_share', 0)
bull_price = scenarios['bull'].get('fair_value_per_share', 0)
results['price_range'] = {
'bear': bear_price,
'base': base_price,
'bull': bull_price,
'range': bull_price - bear_price
}
# Risk/reward assessment
current_price = results['current_price']
if current_price > 0:
downside = ((bear_price - current_price) / current_price) * 100
upside = ((bull_price - current_price) / current_price) * 100
results['risk_reward'] = {
'downside_percent': downside,
'upside_percent': upside,
'risk_reward_ratio': abs(upside / downside) if downside != 0 else 0,
'assessment': 'Favorable' if upside > abs(downside) else 'Unfavorable'
}
return results
def calculate_margin_of_safety(self) -> Dict:
"""
Calculate margin of safety
Returns:
Margin of safety metrics
"""
results = {}
current_price = self.metrics.get('current_price', 0)
if current_price <= 0:
return {'error': 'Invalid current price'}
# Based on DCF
dcf_result = self.calculate_intrinsic_value_dcf()
if 'fair_value_per_share' in dcf_result:
intrinsic_value = dcf_result['fair_value_per_share']
margin = ((intrinsic_value - current_price) / intrinsic_value) * 100 if intrinsic_value > 0 else 0
results['dcf_margin_of_safety'] = {
'intrinsic_value': intrinsic_value,
'current_price': current_price,
'margin_percent': margin,
'assessment': self._assess_margin_of_safety(margin)
}
# Based on book value
book_value = self.metrics.get('book_value_per_share', 0)
if book_value > 0:
margin = ((book_value - current_price) / book_value) * 100
results['book_value_margin'] = {
'book_value': book_value,
'current_price': current_price,
'margin_percent': margin
}
return results
def _assess_margin_of_safety(self, margin: float) -> str:
"""Assess margin of safety"""
if margin >= 30:
return "Excellent - Strong margin of safety"
elif margin >= 20:
return "Good - Adequate margin of safety"
elif margin >= 10:
return "Fair - Minimal margin of safety"
elif margin >= 0:
return "Weak - Little to no margin of safety"
else:
return "Overvalued - Negative margin of safety"
def generate_valuation_report(self) -> Dict:
"""
Generate comprehensive valuation report
Returns:
Complete valuation analysis
"""
return {
'ticker': self.ticker,
'current_price': self.metrics.get('current_price', 0),
'dcf_valuation': self.calculate_intrinsic_value_dcf(),
'relative_valuation': self.calculate_relative_valuation(),
'scenario_analysis': self.scenario_analysis(),
'margin_of_safety': self.calculate_margin_of_safety()
}
if __name__ == "__main__":
print("This module is meant to be imported and used with data from data_fetcher.py and financial_analyzer.py")