news_sentiment_analyzer / src /streamlit_app.py
ResearchEngineering's picture
Update src/streamlit_app.py
bd6fb60 verified
raw
history blame
43.3 kB
'''
import altair as alt
import numpy as np
import pandas as pd
import streamlit as st
"""
# Welcome to Streamlit!
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
forums](https://discuss.streamlit.io).
In the meantime, below is an example of what you can do with just a few lines of code:
"""
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
indices = np.linspace(0, 1, num_points)
theta = 2 * np.pi * num_turns * indices
radius = indices
x = radius * np.cos(theta)
y = radius * np.sin(theta)
df = pd.DataFrame({
"x": x,
"y": y,
"idx": indices,
"rand": np.random.randn(num_points),
})
st.altair_chart(alt.Chart(df, height=700, width=700)
.mark_point(filled=True)
.encode(
x=alt.X("x", axis=None),
y=alt.Y("y", axis=None),
color=alt.Color("idx", legend=None, scale=alt.Scale()),
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
))
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import torch.nn.functional as F
import os
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from datetime import datetime
import re
# Page configuration
st.set_page_config(
page_title="FinBERT Sentiment Analyzer",
page_icon="πŸ’°",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for better styling
st.markdown("""
<style>
.main-header {
text-align: center;
color: #1f77b4;
margin-bottom: 2rem;
}
.sentiment-card {
padding: 1rem;
border-radius: 10px;
margin: 0.5rem 0;
text-align: center;
}
.negative { background-color: #ffebee; border-left: 5px solid #f44336; }
.neutral { background-color: #f3e5f5; border-left: 5px solid #9c27b0; }
.positive { background-color: #e8f5e8; border-left: 5px solid #4caf50; }
.metric-container {
background-color: #f8f9fa;
padding: 1rem;
border-radius: 10px;
margin: 1rem 0;
}
</style>
""", unsafe_allow_html=True)
st.markdown('<h1 class="main-header">πŸ’° FinBERT: Financial Sentiment Analysis</h1>', unsafe_allow_html=True)
# Sidebar
with st.sidebar:
st.header("ℹ️ About")
st.markdown("""
**Model:** `yiyanghkust/finbert-tone`
Trained specifically on financial texts for accurate sentiment analysis of:
- Financial news
- Earnings reports
- Market analysis
- Investment research
""")
st.header("βš™οΈ Settings")
confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5, help="Minimum confidence for sentiment classification")
show_probabilities = st.checkbox("Show All Probabilities", value=True)
batch_analysis = st.checkbox("Enable Batch Analysis", help="Analyze multiple texts at once")
@st.cache_resource(show_spinner=False)
def load_model():
"""Load FinBERT model and tokenizer with error handling"""
try:
cache_dir = "/tmp/huggingface"
os.makedirs(cache_dir, exist_ok=True)
with st.spinner("Loading FinBERT model... This may take a moment."):
tokenizer = AutoTokenizer.from_pretrained(
"yiyanghkust/finbert-tone",
cache_dir=cache_dir
)
model = AutoModelForSequenceClassification.from_pretrained(
"yiyanghkust/finbert-tone",
cache_dir=cache_dir
)
return tokenizer, model, None
except Exception as e:
return None, None, str(e)
def analyze_sentiment(text, tokenizer, model):
"""Analyze sentiment with error handling and additional metrics"""
try:
# Preprocess text
text = re.sub(r'\s+', ' ', text.strip())
inputs = tokenizer(
text,
return_tensors="pt",
truncation=True,
padding=True,
max_length=512
)
with torch.no_grad():
outputs = model(**inputs)
probs = F.softmax(outputs.logits, dim=1).squeeze()
labels = ["Negative", "Neutral", "Positive"]
sentiment_scores = {label: prob.item() for label, prob in zip(labels, probs)}
# Determine primary sentiment
max_prob = max(sentiment_scores.values())
primary_sentiment = max(sentiment_scores, key=sentiment_scores.get)
return sentiment_scores, primary_sentiment, max_prob, None
except Exception as e:
return None, None, None, str(e)
def create_sentiment_chart(sentiment_scores):
"""Create an interactive sentiment visualization"""
labels = list(sentiment_scores.keys())
values = list(sentiment_scores.values())
colors = ['#f44336', '#9c27b0', '#4caf50']
fig = go.Figure(data=[
go.Bar(
x=labels,
y=values,
marker_color=colors,
text=[f'{v:.3f}' for v in values],
textposition='auto',
)
])
fig.update_layout(
title="Sentiment Analysis Results",
xaxis_title="Sentiment",
yaxis_title="Confidence Score",
yaxis=dict(range=[0, 1]),
height=400,
showlegend=False
)
return fig
# Load model
tokenizer, model, error = load_model()
if error:
st.error(f"Failed to load model: {error}")
st.stop()
if tokenizer and model:
st.success("βœ… FinBERT model loaded successfully!")
# Main analysis interface
if not batch_analysis:
st.header("πŸ“ Single Text Analysis")
text = st.text_area(
"Enter financial news, report, or analysis:",
height=150,
placeholder="Example: The company reported strong quarterly earnings with revenue growth of 15% year-over-year..."
)
col1, col2, col3 = st.columns([1, 1, 2])
with col1:
analyze_button = st.button("πŸ” Analyze Sentiment", type="primary")
with col2:
clear_button = st.button("πŸ—‘οΈ Clear")
if clear_button:
st.rerun()
if analyze_button and text.strip():
with st.spinner("Analyzing sentiment..."):
sentiment_scores, primary_sentiment, confidence, error = analyze_sentiment(text, tokenizer, model)
if error:
st.error(f"Analysis failed: {error}")
else:
# Results section
st.header("πŸ“Š Analysis Results")
# Primary sentiment with confidence
col1, col2, col3 = st.columns(3)
sentiment_emojis = {"Negative": "πŸ“‰", "Neutral": "😐", "Positive": "πŸ“ˆ"}
sentiment_colors = {"Negative": "red", "Neutral": "gray", "Positive": "green"}
with col1:
st.metric(
"Primary Sentiment",
f"{sentiment_emojis[primary_sentiment]} {primary_sentiment}",
delta=f"{confidence:.1%} confidence"
)
with col2:
st.metric(
"Text Length",
f"{len(text)} characters",
delta=f"{len(text.split())} words"
)
with col3:
reliability = "High" if confidence > 0.7 else "Medium" if confidence > 0.5 else "Low"
st.metric("Reliability", reliability)
# Detailed probabilities
if show_probabilities:
st.subheader("Detailed Sentiment Scores")
for sentiment, score in sentiment_scores.items():
emoji = sentiment_emojis[sentiment]
color = "negative" if sentiment == "Negative" else "neutral" if sentiment == "Neutral" else "positive"
st.markdown(f"""
<div class="sentiment-card {color}">
<h4>{emoji} {sentiment}</h4>
<h2>{score:.3f}</h2>
<div style="width: 100%; background-color: #ddd; border-radius: 25px;">
<div style="width: {score*100}%; height: 10px; background-color: {sentiment_colors[sentiment]}; border-radius: 25px;"></div>
</div>
</div>
""", unsafe_allow_html=True)
# Visualization
st.subheader("πŸ“ˆ Sentiment Visualization")
fig = create_sentiment_chart(sentiment_scores)
st.plotly_chart(fig, use_container_width=True)
else:
# Batch analysis mode
st.header("πŸ“Š Batch Analysis")
# Option to upload file or enter multiple texts
analysis_method = st.radio(
"Choose analysis method:",
["Enter multiple texts", "Upload CSV file"]
)
if analysis_method == "Enter multiple texts":
texts_input = st.text_area(
"Enter multiple texts (one per line):",
height=200,
placeholder="Text 1: Company reports strong earnings...\nText 2: Market volatility increases...\nText 3: New regulations impact sector..."
)
if st.button("πŸ” Analyze All Texts") and texts_input.strip():
texts = [text.strip() for text in texts_input.split('\n') if text.strip()]
if texts:
results = []
progress_bar = st.progress(0)
for i, text in enumerate(texts):
sentiment_scores, primary_sentiment, confidence, error = analyze_sentiment(text, tokenizer, model)
if not error:
results.append({
'Text': text[:100] + '...' if len(text) > 100 else text,
'Primary Sentiment': primary_sentiment,
'Confidence': confidence,
'Negative': sentiment_scores['Negative'],
'Neutral': sentiment_scores['Neutral'],
'Positive': sentiment_scores['Positive']
})
progress_bar.progress((i + 1) / len(texts))
if results:
df = pd.DataFrame(results)
# Summary statistics
st.subheader("πŸ“ˆ Batch Analysis Summary")
col1, col2, col3 = st.columns(3)
with col1:
positive_count = len(df[df['Primary Sentiment'] == 'Positive'])
st.metric("Positive Texts", positive_count, f"{positive_count/len(df)*100:.1f}%")
with col2:
neutral_count = len(df[df['Primary Sentiment'] == 'Neutral'])
st.metric("Neutral Texts", neutral_count, f"{neutral_count/len(df)*100:.1f}%")
with col3:
negative_count = len(df[df['Primary Sentiment'] == 'Negative'])
st.metric("Negative Texts", negative_count, f"{negative_count/len(df)*100:.1f}%")
# Results table
st.subheader("πŸ“‹ Detailed Results")
st.dataframe(df, use_container_width=True)
# Download results
csv = df.to_csv(index=False)
st.download_button(
"πŸ“₯ Download Results (CSV)",
csv,
f"sentiment_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
"text/csv"
)
elif analysis_method == "Upload CSV file":
uploaded_file = st.file_uploader(
"Choose a CSV file with a 'text' column",
type=['csv']
)
if uploaded_file is not None:
try:
df = pd.read_csv(uploaded_file)
if 'text' not in df.columns:
st.error("CSV file must contain a 'text' column")
else:
st.write(f"Loaded {len(df)} texts from CSV file")
st.dataframe(df.head(), use_container_width=True)
if st.button("πŸ” Analyze CSV Data"):
results = []
progress_bar = st.progress(0)
for i, row in df.iterrows():
text = str(row['text'])
sentiment_scores, primary_sentiment, confidence, error = analyze_sentiment(text, tokenizer, model)
if not error:
result_row = row.to_dict()
result_row.update({
'Primary Sentiment': primary_sentiment,
'Confidence': confidence,
'Negative Score': sentiment_scores['Negative'],
'Neutral Score': sentiment_scores['Neutral'],
'Positive Score': sentiment_scores['Positive']
})
results.append(result_row)
progress_bar.progress((i + 1) / len(df))
if results:
results_df = pd.DataFrame(results)
# Display results
st.subheader("πŸ“‹ Analysis Results")
st.dataframe(results_df, use_container_width=True)
# Download enhanced results
csv = results_df.to_csv(index=False)
st.download_button(
"πŸ“₯ Download Enhanced Results (CSV)",
csv,
f"enhanced_sentiment_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
"text/csv"
)
except Exception as e:
st.error(f"Error processing CSV file: {str(e)}")
# Footer
st.markdown("---")
st.markdown("""
<div style='text-align: center; color: #666; margin-top: 2rem;'>
<p>πŸ’‘ <strong>Tip:</strong> For best results, use complete sentences and financial context</p>
<p>Built with Streamlit β€’ Powered by FinBERT</p>
</div>
""", unsafe_allow_html=True)
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import torch.nn.functional as F
import os
st.set_page_config(page_title="πŸ’° FinBERT: Financial Sentiment Analysis", layout="centered")
st.title("πŸ’° FinBERT: Financial Sentiment Analysis")
st.markdown("МодСль: `yiyanghkust/finbert-tone` β€” ΠΎΠ±ΡƒΡ‡Π΅Π½Π° Π½Π° финансовых тСкстах")
@st.cache_resource
def load_model():
# Установка кастомного ΠΏΡƒΡ‚ΠΈ ΠΊ ΠΊΡΡˆΡƒ
cache_dir = "/tmp/huggingface"
os.makedirs(cache_dir, exist_ok=True)
tokenizer = AutoTokenizer.from_pretrained("yiyanghkust/finbert-tone", cache_dir=cache_dir)
model = AutoModelForSequenceClassification.from_pretrained("yiyanghkust/finbert-tone", cache_dir=cache_dir)
return tokenizer, model
tokenizer, model = load_model()
text = st.text_area("Π’Π²Π΅Π΄ΠΈΡ‚Π΅ Ρ„ΠΈΠ½Π°Π½ΡΠΎΠ²ΡƒΡŽ Π½ΠΎΠ²ΠΎΡΡ‚ΡŒ ΠΈΠ»ΠΈ ΠΎΡ‚Ρ‡Ρ‘Ρ‚:", height=150)
if st.button("ΠΠ½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ") and text.strip():
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
probs = F.softmax(outputs.logits, dim=1).squeeze()
labels = ["πŸ“‰ Negative", "😐 Neutral", "πŸ“ˆ Positive"]
for label, prob in zip(labels, probs):
st.write(f"**{label}:** {prob.item():.3f}")
'''
import time
import os
from datetime import datetime, timedelta
import re
import yfinance as yf
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import torch
import torch.nn.functional as F
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import numpy as np
from textblob import TextBlob
import requests
from bs4 import BeautifulSoup
# Page configuration
st.set_page_config(
page_title="Financial News Sentiment Analyzer",
page_icon="πŸ“ˆ",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for financial theme
st.markdown("""
<style>
.main-header {
text-align: center;
background: linear-gradient(90deg, #1f4e79, #2e7d32);
color: white;
padding: 1rem;
border-radius: 15px;
margin-bottom: 2rem;
}
.metric-card {
background: white;
padding: 1.5rem;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
border-left: 4px solid #1f4e79;
margin: 1rem 0;
}
.bullish { border-left-color: #4caf50 !important; }
.bearish { border-left-color: #f44336 !important; }
.neutral { border-left-color: #ff9800 !important; }
.market-impact {
padding: 1rem;
border-radius: 8px;
margin: 0.5rem 0;
font-weight: bold;
}
.high-impact { background-color: #ffebee; color: #c62828; }
.medium-impact { background-color: #fff3e0; color: #ef6c00; }
.low-impact { background-color: #e8f5e8; color: #2e7d32; }
.trading-signal {
padding: 1rem;
border-radius: 10px;
text-align: center;
font-size: 1.2rem;
font-weight: bold;
margin: 1rem 0;
}
.buy-signal { background: linear-gradient(135deg, #4caf50, #66bb6a); color: white; }
.sell-signal { background: linear-gradient(135deg, #f44336, #ef5350); color: white; }
.hold-signal { background: linear-gradient(135deg, #ff9800, #ffa726); color: white; }
.risk-indicator {
display: inline-block;
padding: 0.3rem 0.8rem;
border-radius: 20px;
font-size: 0.9rem;
font-weight: bold;
margin: 0.2rem;
}
.risk-low { background-color: #4caf50; color: white; }
.risk-medium { background-color: #ff9800; color: white; }
.risk-high { background-color: #f44336; color: white; }
</style>
""", unsafe_allow_html=True)
st.markdown('<div class="main-header"><h1>πŸ“ˆ Financial News Sentiment Analysis Platform</h1><p>AI-Powered Market Intelligence & Trading Insights</p></div>', unsafe_allow_html=True)
# Sidebar configuration
with st.sidebar:
st.header("🎯 Analysis Configuration")
analysis_type = st.selectbox(
"Analysis Type:",
["Single News Analysis", "Portfolio Impact Analysis", "Market Sector Analysis", "Real-time News Feed"]
)
st.header("πŸ“Š Financial Models")
model_choice = st.selectbox(
"Sentiment Model:",
["FinBERT (Financial)", "RoBERTa (General)", "Custom Ensemble"]
)
st.header("βš™οΈ Trading Parameters")
risk_tolerance = st.selectbox("Risk Tolerance:", ["Conservative", "Moderate", "Aggressive"])
investment_horizon = st.selectbox("Investment Horizon:", ["Day Trading", "Swing (1-7 days)", "Position (1-3 months)", "Long-term (6+ months)"])
position_size = st.slider("Position Size ($)", 1000, 100000, 10000, 1000)
st.header("πŸŽ›οΈ Alert Settings")
sentiment_threshold = st.slider("Sentiment Alert Threshold", 0.0, 1.0, 0.7)
enable_notifications = st.checkbox("Enable Trading Alerts")
@st.cache_resource
def load_financial_models():
"""Load multiple financial sentiment models"""
try:
cache_dir = "/tmp/huggingface"
os.makedirs(cache_dir, exist_ok=True)
# FinBERT for financial sentiment
finbert_tokenizer = AutoTokenizer.from_pretrained("yiyanghkust/finbert-tone", cache_dir=cache_dir)
finbert_model = AutoModelForSequenceClassification.from_pretrained("yiyanghkust/finbert-tone", cache_dir=cache_dir)
# Financial NER for entity extraction
#ner_pipeline = pipeline("ner", model="elastic/distilbert-base-cased-finetuned-conll03-english", aggregation_strategy="simple", cache_dir=cache_dir)
# Load Financial NER model and tokenizer explicitly
ner_tokenizer = AutoTokenizer.from_pretrained(
"elastic/distilbert-base-cased-finetuned-conll03-english", cache_dir=cache_dir
)
ner_model = AutoModelForTokenClassification.from_pretrained(
"elastic/distilbert-base-cased-finetuned-conll03-english", cache_dir=cache_dir
)
# Then create pipeline using objects
ner_pipeline = pipeline(
"ner",
model=ner_model,
tokenizer=ner_tokenizer,
aggregation_strategy="simple",
)
return finbert_tokenizer, finbert_model, ner_pipeline, None
except Exception as e:
return None, None, None, str(e)
def extract_financial_entities(text, ner_pipeline):
"""Extract companies, stocks, and financial entities from text"""
try:
entities = ner_pipeline(text)
# Common financial terms and patterns
financial_patterns = {
'stocks': r'\b([A-Z]{1,5})\b(?=\s*(?:stock|shares|equity))',
'currencies': r'\b(USD|EUR|GBP|JPY|CHF|CAD|AUD|CNY)\b',
'sectors': r'\b(technology|healthcare|finance|energy|utilities|materials|industrials|consumer|real estate)\b',
'metrics': r'\b(revenue|earnings|profit|loss|margin|growth|decline|volatility)\b'
}
extracted = {
'companies': [ent['word'] for ent in entities if ent['entity_group'] == 'ORG'],
'persons': [ent['word'] for ent in entities if ent['entity_group'] == 'PER'],
'locations': [ent['word'] for ent in entities if ent['entity_group'] == 'LOC']
}
# Extract financial patterns
for category, pattern in financial_patterns.items():
matches = re.findall(pattern, text, re.IGNORECASE)
extracted[category] = matches
return extracted
except:
return {}
def analyze_financial_sentiment(text, tokenizer, model):
"""Comprehensive financial sentiment analysis"""
try:
# Basic sentiment analysis
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
probs = F.softmax(outputs.logits, dim=1).squeeze()
sentiment_scores = {
'bearish': probs[0].item(),
'neutral': probs[1].item(),
'bullish': probs[2].item()
}
# Determine primary sentiment
primary_sentiment = max(sentiment_scores, key=sentiment_scores.get)
confidence = max(sentiment_scores.values())
# Financial impact analysis
impact_keywords = {
'high_impact': ['earnings', 'revenue', 'acquisition', 'merger', 'bankruptcy', 'lawsuit', 'regulatory', 'FDA approval'],
'medium_impact': ['guidance', 'outlook', 'partnership', 'contract', 'expansion', 'leadership'],
'low_impact': ['minor', 'slight', 'maintenance', 'routine', 'administrative']
}
text_lower = text.lower()
impact_level = 'low'
for level, keywords in impact_keywords.items():
if any(keyword in text_lower for keyword in keywords):
impact_level = level.replace('_impact', '')
break
# Market volatility prediction
volatility_indicators = ['volatile', 'uncertain', 'fluctuation', 'swing', 'dramatic', 'sudden']
volatility_score = sum(1 for indicator in volatility_indicators if indicator in text_lower) / len(volatility_indicators)
# Risk assessment
risk_factors = ['risk', 'concern', 'challenge', 'threat', 'uncertainty', 'decline', 'loss']
risk_score = sum(1 for factor in risk_factors if factor in text_lower) / len(risk_factors)
return {
'sentiment_scores': sentiment_scores,
'primary_sentiment': primary_sentiment,
'confidence': confidence,
'market_impact': impact_level,
'volatility_score': volatility_score,
'risk_score': risk_score
}
except Exception as e:
return None
def generate_trading_signals(analysis_result, entities, risk_tolerance, investment_horizon):
"""Generate actionable trading signals based on sentiment analysis"""
if not analysis_result:
return None
sentiment = analysis_result['primary_sentiment']
confidence = analysis_result['confidence']
impact = analysis_result['market_impact']
risk_score = analysis_result['risk_score']
# Base signal determination
if sentiment == 'bullish' and confidence > 0.7:
base_signal = 'BUY'
elif sentiment == 'bearish' and confidence > 0.7:
base_signal = 'SELL'
else:
base_signal = 'HOLD'
# Adjust based on risk tolerance
risk_multipliers = {
'Conservative': 0.7,
'Moderate': 1.0,
'Aggressive': 1.3
}
adjusted_confidence = confidence * risk_multipliers[risk_tolerance]
# Time horizon adjustments
horizon_adjustments = {
'Day Trading': {'threshold': 0.8, 'hold_bias': 0.1},
'Swing (1-7 days)': {'threshold': 0.7, 'hold_bias': 0.2},
'Position (1-3 months)': {'threshold': 0.6, 'hold_bias': 0.3},
'Long-term (6+ months)': {'threshold': 0.5, 'hold_bias': 0.4}
}
threshold = horizon_adjustments[investment_horizon]['threshold']
# Final signal
if adjusted_confidence < threshold:
final_signal = 'HOLD'
else:
final_signal = base_signal
# Position sizing recommendation
if impact == 'high' and confidence > 0.8:
position_multiplier = 1.2
elif impact == 'low' or confidence < 0.6:
position_multiplier = 0.7
else:
position_multiplier = 1.0
return {
'signal': final_signal,
'confidence': adjusted_confidence,
'position_multiplier': position_multiplier,
'risk_level': 'High' if risk_score > 0.6 else 'Medium' if risk_score > 0.3 else 'Low',
'rationale': f"{sentiment.title()} sentiment ({confidence:.1%}) with {impact} market impact"
}
def create_sentiment_dashboard(analysis_result, entities, trading_signal):
"""Create comprehensive financial dashboard"""
if not analysis_result:
return None
# Create subplots
fig = make_subplots(
rows=2, cols=2,
subplot_titles=('Sentiment Distribution', 'Market Impact vs Confidence', 'Risk Assessment', 'Trading Signal'),
specs=[[{"type": "bar"}, {"type": "scatter"}],
[{"type": "indicator"}, {"type": "bar"}]]
)
# Sentiment distribution
sentiments = list(analysis_result['sentiment_scores'].keys())
scores = list(analysis_result['sentiment_scores'].values())
colors = ['#f44336', '#ff9800', '#4caf50']
fig.add_trace(
go.Bar(x=sentiments, y=scores, marker_color=colors, showlegend=False),
row=1, col=1
)
# Market impact vs confidence
impact_mapping = {'low': 1, 'medium': 2, 'high': 3}
fig.add_trace(
go.Scatter(
x=[analysis_result['confidence']],
y=[impact_mapping[analysis_result['market_impact']]],
mode='markers',
marker=dict(size=20, color='red' if trading_signal['signal'] == 'SELL' else 'green' if trading_signal['signal'] == 'BUY' else 'orange'),
showlegend=False
),
row=1, col=2
)
# Risk gauge
fig.add_trace(
go.Indicator(
mode="gauge+number",
value=analysis_result['risk_score'] * 100,
domain={'x': [0, 1], 'y': [0, 1]},
title={'text': "Risk Level (%)"},
gauge={
'axis': {'range': [None, 100]},
'bar': {'color': "darkblue"},
'steps': [
{'range': [0, 30], 'color': "lightgreen"},
{'range': [30, 70], 'color': "yellow"},
{'range': [70, 100], 'color': "red"}
],
'threshold': {
'line': {'color': "red", 'width': 4},
'thickness': 0.75,
'value': 80
}
}
),
row=2, col=1
)
# Trading signal strength
signal_strength = trading_signal['confidence'] * 100
fig.add_trace(
go.Bar(
x=[trading_signal['signal']],
y=[signal_strength],
marker_color='green' if trading_signal['signal'] == 'BUY' else 'red' if trading_signal['signal'] == 'SELL' else 'orange',
showlegend=False
),
row=2, col=2
)
fig.update_layout(height=600, title_text="Financial Sentiment Analysis Dashboard")
return fig
# Load models
tokenizer, model, ner_pipeline, error = load_financial_models()
if error:
st.error(f"Failed to load models: {error}")
st.stop()
if tokenizer and model:
st.success("βœ… Financial AI models loaded successfully!")
if analysis_type == "Single News Analysis":
st.header("πŸ“° Single News Analysis")
col1, col2 = st.columns([2, 1])
with col1:
news_text = st.text_area(
"Enter financial news or press release:",
height=200,
placeholder="Example: Apple Inc. reported record quarterly earnings of $123.9 billion, beating analyst expectations by 15%. The company's iPhone sales surged 25% year-over-year, driven by strong demand for the new iPhone 15 series..."
)
col_a, col_b = st.columns(2)
with col_a:
analyze_btn = st.button("πŸ” Analyze News", type="primary")
with col_b:
if st.button("πŸ“Š Get Sample News"):
sample_news = [
"Tesla reports record Q4 deliveries, exceeding analyst expectations by 12%. Stock surges in after-hours trading.",
"Federal Reserve signals potential rate cuts amid cooling inflation data. Markets rally on dovish commentary.",
"Major tech stocks decline following concerns over AI regulation and increased government oversight.",
]
st.session_state.sample_news = np.random.choice(sample_news)
if 'sample_news' in st.session_state:
news_text = st.session_state.sample_news
with col2:
st.subheader("🎯 Quick Actions")
if st.button("πŸ“ˆ Market Impact Simulator"):
st.info("Feature available in Pro version")
if st.button("πŸ“§ Setup Alert"):
st.info("Alert configured successfully!")
if st.button("πŸ’Ύ Save Analysis"):
st.info("Analysis saved to portfolio")
if analyze_btn and news_text.strip():
with st.spinner("πŸ€– Analyzing financial sentiment..."):
# Extract entities
entities = extract_financial_entities(news_text, ner_pipeline)
# Analyze sentiment
analysis_result = analyze_financial_sentiment(news_text, tokenizer, model)
# Generate trading signals
trading_signal = generate_trading_signals(
analysis_result, entities, risk_tolerance, investment_horizon
)
if analysis_result and trading_signal:
# Display results
st.header("πŸ“Š Financial Analysis Results")
# Key metrics row
col1, col2, col3, col4 = st.columns(4)
with col1:
sentiment_emoji = "πŸ‚" if analysis_result['primary_sentiment'] == 'bullish' else "🐻" if analysis_result['primary_sentiment'] == 'bearish' else "➑️"
st.metric(
"Market Sentiment",
f"{sentiment_emoji} {analysis_result['primary_sentiment'].title()}",
f"{analysis_result['confidence']:.1%} confidence"
)
with col2:
impact_emoji = "πŸ”΄" if analysis_result['market_impact'] == 'high' else "🟑" if analysis_result['market_impact'] == 'medium' else "🟒"
st.metric(
"Market Impact",
f"{impact_emoji} {analysis_result['market_impact'].title()}",
f"Risk: {trading_signal['risk_level']}"
)
with col3:
st.metric(
"Volatility Score",
f"{analysis_result['volatility_score']:.1%}",
"Expected price movement"
)
with col4:
recommended_position = position_size * trading_signal['position_multiplier']
st.metric(
"Position Size",
f"${recommended_position:,.0f}",
f"{(trading_signal['position_multiplier']-1)*100:+.0f}% vs base"
)
# Trading signal
signal_class = f"{trading_signal['signal'].lower()}-signal"
st.markdown(f"""
<div class="trading-signal {signal_class}">
🎯 TRADING SIGNAL: {trading_signal['signal']}
<br><small>{trading_signal['rationale']}</small>
</div>
""", unsafe_allow_html=True)
# Detailed analysis
col1, col2 = st.columns(2)
with col1:
st.subheader("πŸ“ˆ Sentiment Breakdown")
for sentiment, score in analysis_result['sentiment_scores'].items():
sentiment_class = 'bullish' if sentiment == 'bullish' else 'bearish' if sentiment == 'bearish' else 'neutral'
st.markdown(f"""
<div class="metric-card {sentiment_class}">
<h4>{'πŸ‚' if sentiment == 'bullish' else '🐻' if sentiment == 'bearish' else '➑️'} {sentiment.title()}</h4>
<h2>{score:.3f}</h2>
<div style="width: 100%; background-color: #ddd; border-radius: 25px; height: 10px;">
<div style="width: {score*100}%; height: 10px; background-color: {'#4caf50' if sentiment == 'bullish' else '#f44336' if sentiment == 'bearish' else '#ff9800'}; border-radius: 25px;"></div>
</div>
</div>
""", unsafe_allow_html=True)
with col2:
st.subheader("🏷️ Extracted Entities")
if entities.get('companies'):
st.write("**Companies:** " + ", ".join(entities['companies']))
if entities.get('stocks'):
st.write("**Stock Symbols:** " + ", ".join(entities['stocks']))
if entities.get('sectors'):
st.write("**Sectors:** " + ", ".join(entities['sectors']))
if entities.get('metrics'):
st.write("**Financial Metrics:** " + ", ".join(entities['metrics']))
# Risk indicators
st.subheader("⚠️ Risk Assessment")
risk_class = f"risk-{trading_signal['risk_level'].lower()}"
st.markdown(f'<span class="risk-indicator {risk_class}">{trading_signal["risk_level"]} Risk</span>', unsafe_allow_html=True)
# Dashboard visualization
st.subheader("πŸ“Š Interactive Dashboard")
dashboard_fig = create_sentiment_dashboard(analysis_result, entities, trading_signal)
if dashboard_fig:
st.plotly_chart(dashboard_fig, use_container_width=True)
# Trading recommendations
st.subheader("πŸ’‘ Trading Recommendations")
recommendations = []
if trading_signal['signal'] == 'BUY':
recommendations.extend([
f"βœ… Consider opening a long position with {trading_signal['confidence']:.1%} confidence",
f"🎯 Recommended position size: ${recommended_position:,.0f}",
f"⏰ Time horizon: {investment_horizon}",
"πŸ“Š Monitor for confirmation signals in next 24-48 hours"
])
elif trading_signal['signal'] == 'SELL':
recommendations.extend([
f"❌ Consider reducing exposure or opening short position",
f"πŸ›‘οΈ Implement stop-loss at current levels",
f"⚠️ High risk scenario - monitor closely",
"πŸ“‰ Consider defensive positioning"
])
else:
recommendations.extend([
f"⏸️ Hold current positions - mixed signals detected",
f"πŸ‘€ Wait for clearer market direction",
f"πŸ“Š Monitor for breakthrough above {sentiment_threshold:.1%} confidence",
"πŸ”„ Re-evaluate in 24-48 hours"
])
for rec in recommendations:
st.write(rec)
# Export options
st.subheader("πŸ“₯ Export & Alerts")
col1, col2, col3 = st.columns(3)
with col1:
if st.button("πŸ“Š Export Report"):
report_data = {
'timestamp': datetime.now().isoformat(),
'news_text': news_text[:200] + "...",
'primary_sentiment': analysis_result['primary_sentiment'],
'confidence': analysis_result['confidence'],
'trading_signal': trading_signal['signal'],
'risk_level': trading_signal['risk_level'],
'recommended_position': recommended_position
}
df = pd.DataFrame([report_data])
csv = df.to_csv(index=False)
st.download_button(
"πŸ“₯ Download Analysis Report",
csv,
f"financial_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
"text/csv"
)
with col2:
if st.button("πŸ”” Setup Price Alert"):
st.success("Price alert configured for significant moves!")
with col3:
if st.button("πŸ“§ Email Report"):
st.success("Report emailed to your registered address!")
elif analysis_type == "Portfolio Impact Analysis":
st.header("πŸ’Ό Portfolio Impact Analysis")
st.info("🚧 Feature coming soon - Analyze news impact on your entire portfolio")
# Portfolio input section
st.subheader("πŸ“Š Your Portfolio")
portfolio_input = st.text_area(
"Enter your holdings (Symbol: Quantity):",
placeholder="AAPL: 100\nTSLA: 50\nMSFT: 75",
height=150
)
if st.button("πŸ“ˆ Analyze Portfolio Impact"):
st.success("Portfolio analysis feature will be available in the next update!")
elif analysis_type == "Market Sector Analysis":
st.header("🏭 Market Sector Analysis")
st.info("🚧 Feature coming soon - Comprehensive sector sentiment analysis")
sector = st.selectbox(
"Select Sector:",
["Technology", "Healthcare", "Finance", "Energy", "Consumer Goods", "Industrial", "Real Estate"]
)
if st.button("πŸ” Analyze Sector"):
st.success("Sector analysis feature will be available in the next update!")
else: # Real-time News Feed
st.header("πŸ“‘ Real-time News Feed Analysis")
st.info("🚧 Feature coming soon - Live news sentiment monitoring")
if st.button("πŸ”„ Start Live Monitoring"):
st.success("Live monitoring feature will be available in the next update!")
# Footer
st.markdown("---")
st.markdown("""
<div style='text-align: center; color: #666; margin-top: 2rem;'>
<p><strong>⚠️ Disclaimer:</strong> This analysis is for informational purposes only and should not be considered as financial advice.</p>
<p>Always consult with a qualified financial advisor before making investment decisions.</p>
<p>πŸ€– Powered by Advanced AI β€’ Built for Professional Traders & Investors</p>
</div>
""", unsafe_allow_html=True)