Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from PyPDF2 import PdfReader | |
| import google.generativeai as genai | |
| import os | |
| from langsmith import Client | |
| from ragas.metrics import faithfulness, answer_relevancy, context_relevancy | |
| # 更新的 langchain_community 導入 | |
| from langchain_community.llms import OpenAI # 示例導入 | |
| # 加載模型 | |
| openelm_model = AutoModelForCausalLM.from_pretrained( | |
| "apple/OpenELM-270M", | |
| trust_remote_code=True | |
| ) | |
| # 加載 tokenizer,確保 trust_remote_code=True | |
| openelm_tokenizer = AutoTokenizer.from_pretrained( | |
| "apple/OpenELM-270M", | |
| trust_remote_code=True | |
| ) | |
| # 設置 Gemini API | |
| GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") | |
| genai.configure(api_key=GOOGLE_API_KEY) | |
| # 設置 LangSmith | |
| os.environ["LANGCHAIN_API_KEY"] = "your_langchain_api_key" | |
| os.environ["LANGCHAIN_TRACING_V2"] = "true" | |
| os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com" | |
| client = Client() | |
| def extract_text_from_pdf(pdf_path): | |
| with open(pdf_path, 'rb') as file: | |
| reader = PdfReader(file) | |
| text = "" | |
| for page in reader.pages: | |
| text += page.extract_text() + "\n" | |
| return text | |
| def gemini_generate(prompt, max_tokens): | |
| model = genai.GenerativeModel('gemini-pro') | |
| response = model.generate_content(prompt, max_output_tokens=max_tokens) | |
| return response.text | |
| def openelm_generate(prompt, max_tokens): | |
| tokenized_prompt = openelm_tokenizer(prompt, return_tensors="pt") | |
| output_ids = openelm_model.generate( | |
| tokenized_prompt["input_ids"], | |
| max_length=max_tokens, | |
| pad_token_id=0, | |
| ) | |
| return openelm_tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
| def evaluate_response(response, context, query): | |
| faith_score = faithfulness.score([response], [context], [query]) | |
| ans_rel_score = answer_relevancy.score([response], [query]) | |
| ctx_rel_score = context_relevancy.score([response], [context], [query]) | |
| return faith_score, ans_rel_score, ctx_rel_score | |
| def process_query(pdf_file, llm_choice, query, max_tokens, api_key): | |
| try: | |
| global GOOGLE_API_KEY | |
| if api_key: | |
| GOOGLE_API_KEY = api_key | |
| genai.configure(api_key=GOOGLE_API_KEY) | |
| # 從 PDF 提取文本 | |
| pdf_path = pdf_file.name | |
| context = extract_text_from_pdf(pdf_path) | |
| # 根據選擇的 LLM 生成回應 | |
| if llm_choice == "Gemini": | |
| response = gemini_generate(f"上下文: {context}\n問題: {query}", max_tokens) | |
| else: # OpenELM | |
| response = openelm_generate(f"上下文: {context}\n問題: {query}", max_tokens) | |
| # 評估回應 | |
| faith_score, ans_rel_score, ctx_rel_score = evaluate_response(response, context, query) | |
| return response, faith_score, ans_rel_score, ctx_rel_score | |
| except Exception as e: | |
| return str(e), 0, 0, 0 # 返回錯誤消息和零分數 | |
| # Gradio 介面 | |
| iface = gr.Interface( | |
| fn=process_query, | |
| inputs=[ | |
| gr.File(label="上傳 PDF"), | |
| gr.Dropdown(["Gemini", "OpenELM"], label="選擇 LLM"), | |
| gr.Textbox(label="輸入您的問題"), | |
| gr.Slider(minimum=50, maximum=1000, step=50, label="最大令牌數"), | |
| gr.Textbox(label="Gemini API 金鑰 (可選)", type="password") | |
| ], | |
| outputs=[ | |
| gr.Textbox(label="生成的答案"), | |
| gr.Number(label="真實性得分"), | |
| gr.Number(label="答案相關性得分"), | |
| gr.Number(label="上下文相關性得分") | |
| ], | |
| title="多模型 LLM 查詢介面,支持 PDF 上下文", | |
| description="上傳 PDF,選擇 LLM,並提出問題。回應將使用 RAGAS 指標進行評估。" | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() | |