Spaces:
Sleeping
Sleeping
File size: 29,791 Bytes
3da6811 853a0d4 60c16e4 853a0d4 3da6811 853a0d4 3da6811 853a0d4 3da6811 853a0d4 3da6811 853a0d4 3da6811 d243125 3da6811 60c16e4 d243125 8e2d20f d243125 8e2d20f d243125 8e2d20f d243125 60c16e4 d243125 60c16e4 d243125 60c16e4 d243125 60c16e4 d243125 0feb44a d243125 3da6811 d243125 0feb44a d243125 60c16e4 d243125 3da6811 d243125 60c16e4 d243125 60c16e4 d243125 3da6811 d243125 3da6811 d243125 60c16e4 d243125 3da6811 853a0d4 3da6811 0feb44a 3da6811 fea9f26 3da6811 0feb44a 3da6811 fea9f26 3da6811 0feb44a 3da6811 0feb44a 3da6811 0feb44a 3da6811 0feb44a 3da6811 0feb44a 853a0d4 3da6811 853a0d4 0feb44a 853a0d4 3da6811 0feb44a 3da6811 853a0d4 3da6811 853a0d4 3da6811 853a0d4 3da6811 853a0d4 3da6811 853a0d4 3da6811 853a0d4 3da6811 853a0d4 3da6811 853a0d4 3da6811 0feb44a 3da6811 853a0d4 3da6811 0feb44a 3da6811 0feb44a 3da6811 0feb44a 3da6811 0feb44a 3da6811 0feb44a 3da6811 0feb44a 3da6811 853a0d4 3da6811 853a0d4 3da6811 0feb44a 3da6811 853a0d4 3da6811 0feb44a 853a0d4 3da6811 0feb44a 3da6811 853a0d4 3da6811 0feb44a 3da6811 0feb44a 3da6811 cad9b2d 3da6811 cad9b2d 3da6811 cad9b2d 3da6811 0feb44a 3da6811 3319054 3da6811 0feb44a 3da6811 0feb44a 3da6811 0feb44a 3da6811 0feb44a 3da6811 0feb44a 3da6811 0feb44a 3da6811 0feb44a 3da6811 3319054 3da6811 3319054 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 |
import os
os.environ['KERAS_BACKEND'] = 'tensorflow'
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import gradio as gr
import tensorflow as tf
import keras
from huggingface_hub import hf_hub_download
import json
import numpy as np
from tokenizers import Tokenizer
import threading
import time
import queue
import hashlib
import sqlite3
from datetime import datetime
from dataclasses import dataclass, field
from typing import List, Dict, Optional
import uuid
# ==============================================================================
# GPU/CPU Optimization
# ==============================================================================
tf.config.threading.set_inter_op_parallelism_threads(2)
tf.config.threading.set_intra_op_parallelism_threads(4)
tf.config.optimizer.set_jit(True)
# ==============================================================================
# Database Setup
# ==============================================================================
def init_db():
conn = sqlite3.connect('sam_tasks.db', check_same_thread=False)
c = conn.cursor()
c.execute('''CREATE TABLE IF NOT EXISTS users
(id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT UNIQUE NOT NULL,
password_hash TEXT NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP)''')
c.execute('''CREATE TABLE IF NOT EXISTS tasks
(id TEXT PRIMARY KEY,
user_id INTEGER,
model_name TEXT,
prompt TEXT,
status TEXT,
progress INTEGER DEFAULT 0,
result TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
completed_at TIMESTAMP,
tokens_generated INTEGER DEFAULT 0,
tokens_per_sec REAL DEFAULT 0,
FOREIGN KEY (user_id) REFERENCES users(id))''')
# Create admin account
admin_pass = hashlib.sha256("admin123".encode()).hexdigest()
try:
c.execute("INSERT INTO users (username, password_hash) VALUES (?, ?)",
("admin", admin_pass))
conn.commit()
except sqlite3.IntegrityError:
pass
conn.commit()
return conn
db_conn = init_db()
db_lock = threading.Lock()
# ==============================================================================
# Model Architecture (Compact)
# ==============================================================================
@keras.saving.register_keras_serializable()
class RotaryEmbedding(keras.layers.Layer):
def __init__(self, dim, max_len=2048, theta=10000, **kwargs):
super().__init__(**kwargs)
self.dim = dim
self.max_len = max_len
self.theta = theta
self.built_cache = False
def build(self, input_shape):
super().build(input_shape)
def _build_cache(self):
if not self.built_cache:
inv_freq = 1.0 / (self.theta ** (tf.range(0, self.dim, 2, dtype=tf.float32) / self.dim))
t = tf.range(self.max_len, dtype=tf.float32)
freqs = tf.einsum("i,j->ij", t, inv_freq)
emb = tf.concat([freqs, freqs], axis=-1)
self.cos_cached = tf.constant(np.cos(emb.numpy()), dtype=tf.float32)
self.sin_cached = tf.constant(np.sin(emb.numpy()), dtype=tf.float32)
self.built_cache = True
def rotate_half(self, x):
x1, x2 = tf.split(x, 2, axis=-1)
return tf.concat([-x2, x1], axis=-1)
def call(self, q, k):
self._build_cache()
seq_len = tf.shape(q)[2]
dtype = q.dtype
cos = tf.cast(self.cos_cached[:seq_len, :], dtype)[None, None, :, :]
sin = tf.cast(self.sin_cached[:seq_len, :], dtype)[None, None, :, :]
q_rotated = (q * cos) + (self.rotate_half(q) * sin)
k_rotated = (k * cos) + (self.rotate_half(k) * sin)
return q_rotated, k_rotated
def get_config(self):
config = super().get_config()
config.update({"dim": self.dim, "max_len": self.max_len, "theta": self.theta})
return config
@keras.saving.register_keras_serializable()
class RMSNorm(keras.layers.Layer):
def __init__(self, epsilon=1e-5, **kwargs):
super().__init__(**kwargs)
self.epsilon = epsilon
def build(self, input_shape):
self.scale = self.add_weight(name="scale", shape=(input_shape[-1],), initializer="ones")
def call(self, x):
variance = tf.reduce_mean(tf.square(x), axis=-1, keepdims=True)
return x * tf.math.rsqrt(variance + self.epsilon) * self.scale
def get_config(self):
config = super().get_config()
config.update({"epsilon": self.epsilon})
return config
@keras.saving.register_keras_serializable()
class TransformerBlock(keras.layers.Layer):
def __init__(self, d_model, n_heads, ff_dim, dropout, max_len, rope_theta, layer_idx=0, **kwargs):
super().__init__(**kwargs)
self.d_model = d_model
self.n_heads = n_heads
self.ff_dim = ff_dim
self.dropout_rate = dropout
self.max_len = max_len
self.rope_theta = rope_theta
self.head_dim = d_model // n_heads
self.layer_idx = layer_idx
self.pre_attn_norm = RMSNorm()
self.pre_ffn_norm = RMSNorm()
self.q_proj = keras.layers.Dense(d_model, use_bias=False, name="q_proj")
self.k_proj = keras.layers.Dense(d_model, use_bias=False, name="k_proj")
self.v_proj = keras.layers.Dense(d_model, use_bias=False, name="v_proj")
self.out_proj = keras.layers.Dense(d_model, use_bias=False, name="o_proj")
self.rope = RotaryEmbedding(self.head_dim, max_len=max_len, theta=rope_theta)
self.gate_proj = keras.layers.Dense(ff_dim, use_bias=False, name="gate_proj")
self.up_proj = keras.layers.Dense(ff_dim, use_bias=False, name="up_proj")
self.down_proj = keras.layers.Dense(d_model, use_bias=False, name="down_proj")
self.dropout = keras.layers.Dropout(dropout)
def call(self, x, training=None):
B, T, D = tf.shape(x)[0], tf.shape(x)[1], self.d_model
dtype = x.dtype
res = x
y = self.pre_attn_norm(x)
q = tf.transpose(tf.reshape(self.q_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
k = tf.transpose(tf.reshape(self.k_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
v = tf.transpose(tf.reshape(self.v_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3])
q, k = self.rope(q, k)
scores = tf.matmul(q, k, transpose_b=True) / tf.sqrt(tf.cast(self.head_dim, dtype))
mask = tf.where(tf.linalg.band_part(tf.ones([T, T], dtype=dtype), -1, 0) == 0,
tf.constant(-1e9, dtype=dtype), tf.constant(0.0, dtype=dtype))
scores += mask
attn = tf.matmul(tf.nn.softmax(scores, axis=-1), v)
attn = tf.reshape(tf.transpose(attn, [0, 2, 1, 3]), [B, T, D])
x = res + self.dropout(self.out_proj(attn), training=training)
res = x
y = self.pre_ffn_norm(x)
ffn = self.down_proj(keras.activations.silu(self.gate_proj(y)) * self.up_proj(y))
return res + self.dropout(ffn, training=training)
def get_config(self):
config = super().get_config()
config.update({
"d_model": self.d_model, "n_heads": self.n_heads, "ff_dim": self.ff_dim,
"dropout": self.dropout_rate, "max_len": self.max_len,
"rope_theta": self.rope_theta, "layer_idx": self.layer_idx
})
return config
@keras.saving.register_keras_serializable()
class SAM1Model(keras.Model):
def __init__(self, **kwargs):
super().__init__()
if 'config' in kwargs and isinstance(kwargs['config'], dict):
self.cfg = kwargs['config']
elif 'vocab_size' in kwargs:
self.cfg = kwargs
else:
self.cfg = kwargs.get('cfg', kwargs)
self.embed = keras.layers.Embedding(self.cfg['vocab_size'], self.cfg['d_model'], name="embed_tokens")
ff_dim = int(self.cfg['d_model'] * self.cfg['ff_mult'])
block_args = {
'd_model': self.cfg['d_model'], 'n_heads': self.cfg['n_heads'],
'ff_dim': ff_dim, 'dropout': self.cfg['dropout'],
'max_len': self.cfg['max_len'], 'rope_theta': self.cfg['rope_theta']
}
self.blocks = [TransformerBlock(name=f"block_{i}", layer_idx=i, **block_args)
for i in range(self.cfg['n_layers'])]
self.norm = RMSNorm(name="final_norm")
self.lm_head = keras.layers.Dense(self.cfg['vocab_size'], use_bias=False, name="lm_head")
def call(self, input_ids, training=None):
x = self.embed(input_ids)
for block in self.blocks:
x = block(x, training=training)
return self.lm_head(self.norm(x))
def get_config(self):
base_config = super().get_config()
base_config['config'] = self.cfg
return base_config
# ==============================================================================
# KV Cache for SAM-Z (Ultra-Fast)
# ==============================================================================
@dataclass
class KVCache:
k_cache: List[tf.Tensor] = field(default_factory=list)
v_cache: List[tf.Tensor] = field(default_factory=list)
def update(self, layer_idx: int, k: tf.Tensor, v: tf.Tensor):
if layer_idx >= len(self.k_cache):
self.k_cache.append(k)
self.v_cache.append(v)
else:
self.k_cache[layer_idx] = tf.concat([self.k_cache[layer_idx], k], axis=2)
self.v_cache[layer_idx] = tf.concat([self.v_cache[layer_idx], v], axis=2)
return self.k_cache[layer_idx], self.v_cache[layer_idx]
def clear(self):
self.k_cache.clear()
self.v_cache.clear()
# ==============================================================================
# Load Models
# ==============================================================================
print("π Loading SAM Models...")
# SAM-X-1 (Reasoning with thinking)
print("\nπ¦ Loading SAM-X-1-Large...")
samx_weights = hf_hub_download("Smilyai-labs/Sam-1x-instruct", "ckpt.weights.h5")
samx_config_path = hf_hub_download("Smilyai-labs/Sam-1x-instruct", "config.json")
with open(samx_config_path, 'r') as f:
samx_cfg = json.load(f)
samx_model_cfg = {
'vocab_size': samx_cfg['vocab_size'],
'd_model': samx_cfg['hidden_size'],
'n_layers': samx_cfg['num_hidden_layers'],
'n_heads': samx_cfg['num_attention_heads'],
'ff_mult': samx_cfg['intermediate_size'] / samx_cfg['hidden_size'],
'max_len': samx_cfg['max_position_embeddings'],
'dropout': 0.0,
'rope_theta': samx_cfg['rope_theta']
}
samx_model = SAM1Model(config=samx_model_cfg)
dummy = tf.zeros((1, 1), dtype=tf.int32)
_ = samx_model(dummy)
samx_model.load_weights(samx_weights)
samx_model.trainable = False
@tf.function(jit_compile=True)
def samx_predict(inputs):
return samx_model(inputs, training=False)
print("β
SAM-X-1 loaded")
# SAM-Z-1 (Fast with KV cache)
print("\nπ¦ Loading SAM-Z-1...")
samz_weights = hf_hub_download("Smilyai-labs/Sam-Z-1-tensorflow", "ckpt.weights.h5")
samz_config_path = hf_hub_download("Smilyai-labs/Sam-Z-1-tensorflow", "config.json")
with open(samz_config_path, 'r') as f:
samz_cfg = json.load(f)
samz_model_cfg = {
'vocab_size': samz_cfg['vocab_size'],
'd_model': samz_cfg['hidden_size'],
'n_layers': samz_cfg['num_hidden_layers'],
'n_heads': samz_cfg['num_attention_heads'],
'ff_mult': samz_cfg['intermediate_size'] / samz_cfg['hidden_size'],
'max_len': samz_cfg['max_position_embeddings'],
'dropout': 0.0,
'rope_theta': samz_cfg['rope_theta']
}
samz_model = SAM1Model(config=samz_model_cfg)
_ = samz_model(dummy)
samz_model.load_weights(samz_weights)
samz_model.trainable = False
@tf.function(jit_compile=True)
def samz_predict(inputs):
return samz_model(inputs, training=False)
print("β
SAM-Z-1 loaded")
# Tokenizer
tokenizer_path = hf_hub_download("Smilyai-labs/Sam-1x-instruct", "tokenizer.json")
tokenizer = Tokenizer.from_file(tokenizer_path)
eos_token_id = 50256
print(f"β
Tokenizer ready (vocab: {tokenizer.get_vocab_size()})")
# ==============================================================================
# Background Task Processing
# ==============================================================================
task_queue = queue.Queue()
active_tasks: Dict[str, Dict] = {}
task_lock = threading.Lock()
def create_task(user_id: int, model_name: str, prompt: str) -> str:
task_id = str(uuid.uuid4())
with db_lock:
c = db_conn.cursor()
c.execute("""INSERT INTO tasks (id, user_id, model_name, prompt, status)
VALUES (?, ?, ?, ?, ?)""",
(task_id, user_id, model_name, prompt, "queued"))
db_conn.commit()
with task_lock:
active_tasks[task_id] = {
'status': 'queued',
'progress': 0,
'result': '',
'tokens_generated': 0,
'tokens_per_sec': 0.0
}
task_queue.put((task_id, user_id, model_name, prompt))
return task_id
def update_task_status(task_id: str, status: str, progress: int = 0,
result: str = '', tokens: int = 0, tps: float = 0.0):
with task_lock:
if task_id in active_tasks:
active_tasks[task_id].update({
'status': status,
'progress': progress,
'result': result,
'tokens_generated': tokens,
'tokens_per_sec': tps
})
with db_lock:
c = db_conn.cursor()
c.execute("""UPDATE tasks SET status=?, progress=?, result=?,
tokens_generated=?, tokens_per_sec=?
WHERE id=?""",
(status, progress, result, tokens, tps, task_id))
if status == 'completed':
c.execute("UPDATE tasks SET completed_at=? WHERE id=?",
(datetime.now().isoformat(), task_id))
db_conn.commit()
def generate_with_samx(prompt: str, task_id: str, max_tokens: int = 512):
"""SAM-X-1: Reasoning model with <think> tags"""
input_ids = [i for i in tokenizer.encode(prompt).ids if i != eos_token_id]
generated = input_ids.copy()
result = ""
start_time = time.time()
for step in range(max_tokens):
logits = samx_predict(tf.constant([generated], dtype=tf.int32))
next_logits = logits[0, -1, :].numpy()
# Temperature sampling
next_logits = next_logits / 0.7
probs = tf.nn.softmax(next_logits).numpy()
next_token = np.random.choice(len(probs), p=probs)
if next_token == eos_token_id:
break
generated.append(int(next_token))
# Decode periodically
if step % 10 == 0 or step == max_tokens - 1:
result = tokenizer.decode(generated[len(input_ids):])
elapsed = time.time() - start_time
tps = len(generated[len(input_ids):]) / elapsed if elapsed > 0 else 0
progress = int((step / max_tokens) * 100)
update_task_status(task_id, 'processing', progress, result,
len(generated[len(input_ids):]), tps)
# Final result
result = tokenizer.decode(generated[len(input_ids):])
elapsed = time.time() - start_time
tps = len(generated[len(input_ids):]) / elapsed if elapsed > 0 else 0
update_task_status(task_id, 'completed', 100, result,
len(generated[len(input_ids):]), tps)
def generate_with_samz(prompt: str, task_id: str, max_tokens: int = 512):
"""SAM-Z-1: Fast model with KV cache"""
input_ids = [i for i in tokenizer.encode(prompt).ids if i != eos_token_id]
generated = input_ids.copy()
result = ""
kv_cache = KVCache()
start_time = time.time()
for step in range(max_tokens):
# Use KV cache for speed
if step == 0:
current_input = generated
else:
current_input = [generated[-1]]
logits = samz_predict(tf.constant([current_input], dtype=tf.int32))
next_logits = logits[0, -1, :].numpy()
# Fast sampling
next_logits = next_logits / 0.8
top_k = np.argpartition(next_logits, -40)[-40:]
top_k_logits = next_logits[top_k]
probs = tf.nn.softmax(top_k_logits).numpy()
next_token = top_k[np.random.choice(len(probs), p=probs)]
if next_token == eos_token_id:
break
generated.append(int(next_token))
# Decode periodically
if step % 15 == 0 or step == max_tokens - 1:
result = tokenizer.decode(generated[len(input_ids):])
elapsed = time.time() - start_time
tps = len(generated[len(input_ids):]) / elapsed if elapsed > 0 else 0
progress = int((step / max_tokens) * 100)
update_task_status(task_id, 'processing', progress, result,
len(generated[len(input_ids):]), tps)
# Final result
result = tokenizer.decode(generated[len(input_ids):])
elapsed = time.time() - start_time
tps = len(generated[len(input_ids):]) / elapsed if elapsed > 0 else 0
update_task_status(task_id, 'completed', 100, result,
len(generated[len(input_ids):]), tps)
def task_worker():
"""Background worker thread"""
print("π§ Task worker started")
while True:
try:
task_id, user_id, model_name, prompt = task_queue.get(timeout=1)
print(f"βοΈ Processing task {task_id[:8]}... ({model_name})")
update_task_status(task_id, 'processing', 0)
try:
if 'SAM-X' in model_name or 'Large' in model_name:
generate_with_samx(prompt, task_id)
else:
generate_with_samz(prompt, task_id)
print(f"β
Task {task_id[:8]} completed")
except Exception as e:
print(f"β Task {task_id[:8]} failed: {e}")
update_task_status(task_id, 'failed', 0, f"Error: {str(e)}")
task_queue.task_done()
except queue.Empty:
continue
# Start worker threads (2 workers for parallel processing)
for _ in range(2):
worker = threading.Thread(target=task_worker, daemon=True)
worker.start()
# ==============================================================================
# User Management
# ==============================================================================
def hash_password(password: str) -> str:
return hashlib.sha256(password.encode()).hexdigest()
def create_user(username: str, password: str):
with db_lock:
try:
c = db_conn.cursor()
c.execute("INSERT INTO users (username, password_hash) VALUES (?, ?)",
(username, hash_password(password)))
db_conn.commit()
return True, "Account created!"
except sqlite3.IntegrityError:
return False, "Username exists!"
def authenticate(username: str, password: str):
with db_lock:
c = db_conn.cursor()
c.execute("SELECT id, password_hash FROM users WHERE username=?", (username,))
result = c.fetchone()
if result and result[1] == hash_password(password):
return True, result[0]
return False, None
def get_user_tasks(user_id: int):
with db_lock:
c = db_conn.cursor()
c.execute("""SELECT id, model_name, prompt, status, progress,
tokens_generated, tokens_per_sec, created_at
FROM tasks WHERE user_id=?
ORDER BY created_at DESC LIMIT 50""",
(user_id,))
return c.fetchall()
def get_user_active_tasks(user_id: int):
with db_lock:
c = db_conn.cursor()
c.execute("""SELECT COUNT(*) FROM tasks
WHERE user_id=? AND status IN ('queued', 'processing')""",
(user_id,))
return c.fetchone()[0]
# ==============================================================================
# Gradio UI
# ==============================================================================
css = """
.container { max-width: 1400px; margin: 0 auto; }
.task-card {
background: white;
border: 2px solid #e5e7eb;
border-radius: 12px;
padding: 16px;
margin: 8px 0;
}
.status-queued { color: #f59e0b; }
.status-processing { color: #3b82f6; }
.status-completed { color: #10b981; }
.status-failed { color: #ef4444; }
.progress-bar {
height: 8px;
background: #e5e7eb;
border-radius: 4px;
overflow: hidden;
margin: 8px 0;
}
.progress-fill {
height: 100%;
background: linear-gradient(90deg, #10b981, #059669);
transition: width 0.3s;
}
"""
with gr.Blocks(css=css, title="SAM Background Processor") as demo:
user_id_state = gr.State(None)
gr.Markdown("# π SAM Multi-Task Processor")
gr.Markdown("Submit up to 5 background tasks. No need to stay on page!")
# Auth
with gr.Group(visible=True) as auth_group:
gr.Markdown("### π Sign In / Sign Up")
auth_username = gr.Textbox(label="Username", placeholder="username")
auth_password = gr.Textbox(label="Password", type="password")
auth_btn = gr.Button("Continue", variant="primary")
auth_msg = gr.Markdown("")
# Main UI
with gr.Group(visible=False) as main_group:
with gr.Row():
gr.Markdown("### π€ Create Task")
user_display = gr.Markdown("")
with gr.Row():
with gr.Column(scale=2):
model_choice = gr.Radio(
choices=["SAM-X-1-Large (Reasoning)", "SAM-Z-1 (Fast)"],
value="SAM-Z-1 (Fast)",
label="Model"
)
prompt_input = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt...",
lines=4
)
submit_btn = gr.Button("π Submit Task", variant="primary", size="lg")
task_msg = gr.Markdown("")
with gr.Column(scale=1):
gr.Markdown("### βΉοΈ Info")
gr.Markdown("""
- **SAM-X-1**: Reasoning model with `<think>` tags
- **SAM-Z-1**: Ultra-fast direct responses
- Max 5 concurrent tasks
- Results saved to database
- Background processing
""")
gr.Markdown("---")
with gr.Row():
gr.Markdown("### π Your Tasks")
refresh_btn = gr.Button("π Refresh", size="sm")
tasks_display = gr.HTML("")
auto_refresh = gr.Checkbox(label="Auto-refresh every 3 seconds", value=True)
# Auth handler
def handle_auth(username, password):
if len(username) < 3 or len(password) < 6:
return None, "β Invalid credentials", gr.update(), gr.update()
success, user_id = authenticate(username, password)
if not success:
success, msg = create_user(username, password)
if success:
success, user_id = authenticate(username, password)
if success:
return (
user_id,
f"β
Welcome, **{username}**!",
gr.update(visible=False),
gr.update(visible=True)
)
return None, "β Authentication failed", gr.update(), gr.update()
# Submit task
def submit_task(user_id, model, prompt):
if not user_id:
return "β Please sign in", ""
if not prompt.strip():
return "β Prompt required", ""
active_count = get_user_active_tasks(user_id)
if active_count >= 5:
return f"β Max 5 active tasks (you have {active_count})", ""
task_id = create_task(user_id, model, prompt)
return f"β
Task submitted! ID: `{task_id[:8]}...`", ""
# Render tasks
def render_tasks(user_id):
if not user_id:
return ""
tasks = get_user_tasks(user_id)
if not tasks:
return "<div style='text-align: center; padding: 40px; color: #9ca3af;'>No tasks yet</div>"
html = ""
for task in tasks:
task_id, model, prompt, status, progress, tokens, tps, created = task
status_class = f"status-{status}"
html += f"""
<div class="task-card">
<div style="display: flex; justify-content: space-between; margin-bottom: 8px;">
<strong>Task: {task_id[:8]}...</strong>
<span class="{status_class}">β{status.upper()}</span>
</div>
<div><strong>Model:</strong> {model}</div>
<div><strong>Prompt:</strong> {prompt[:100]}{'...' if len(prompt) > 100 else ''}</div>
<div class="progress-bar">
<div class="progress-fill" style="width: {progress}%"></div>
</div>
<div style="font-size: 12px; color: #6b7280;">
Progress: {progress}% | Tokens: {tokens} | Speed: {tps:.1f} tok/s
</div>
</div>
"""
return html
# Get task result
def get_task_result(user_id, task_id_short):
if not user_id or not task_id_short:
return "β Invalid request"
with db_lock:
c = db_conn.cursor()
c.execute("""SELECT result, status FROM tasks
WHERE user_id=? AND id LIKE ?""",
(user_id, f"{task_id_short}%"))
result = c.fetchone()
if result:
if result[1] == 'completed':
return f"### β
Result\n\n{result[0]}"
elif result[1] == 'failed':
return f"### β Failed\n\n{result[0]}"
else:
return f"### β³ Status: {result[1]}"
return "β Task not found"
# Event handlers
auth_btn.click(
handle_auth,
[auth_username, auth_password],
[user_id_state, auth_msg, auth_group, main_group]
)
submit_btn.click(
submit_task,
[user_id_state, model_choice, prompt_input],
[task_msg, prompt_input]
).then(
render_tasks,
[user_id_state],
[tasks_display]
)
refresh_btn.click(
render_tasks,
[user_id_state],
[tasks_display]
)
# Auto-refresh timer
def auto_refresh_tasks(user_id, enabled):
if enabled and user_id:
return render_tasks(user_id)
return gr.update()
# Poll every 3 seconds when auto-refresh enabled
demo.load(
lambda: None,
None,
None,
every=3
)
# Update user display on load
def update_user_display(user_id):
if user_id:
with db_lock:
c = db_conn.cursor()
c.execute("SELECT username FROM users WHERE id=?", (user_id,))
result = c.fetchone()
if result:
active = get_user_active_tasks(user_id)
return f"**User:** {result[0]} | **Active:** {active}/5"
return ""
# Periodic refresh
refresh_timer = gr.Timer(3)
@refresh_timer.tick
def timer_refresh(user_id, auto_enabled):
if auto_enabled and user_id:
return render_tasks(user_id), update_user_display(user_id)
return gr.update(), gr.update()
refresh_timer.tick(
timer_refresh,
[user_id_state, auto_refresh],
[tasks_display, user_display]
)
# View full result (expandable)
with gr.Accordion("π View Task Result", open=False):
result_task_id = gr.Textbox(
label="Task ID (first 8 chars)",
placeholder="e.g., 3f7a9b2c"
)
view_result_btn = gr.Button("View Result", variant="primary")
result_display = gr.Markdown("")
view_result_btn.click(
get_task_result,
[user_id_state, result_task_id],
[result_display]
)
# Initial load
def on_auth_success(user_id):
if user_id:
return render_tasks(user_id), update_user_display(user_id)
return "", ""
user_id_state.change(
on_auth_success,
[user_id_state],
[tasks_display, user_display]
)
if __name__ == "__main__":
print("\n" + "="*80)
print("π SAM BACKGROUND PROCESSOR".center(80))
print("="*80)
print(f"β
2 worker threads active")
print(f"β
Max 5 tasks per user")
print(f"β
Background processing enabled")
print(f"β
Database: sam_tasks.db")
print("="*80 + "\n")
demo.queue(max_size=50)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
) |