VISION-LLM-COT / app.py
Keeby-smilyai's picture
Update app.py
c91df11 verified
# app.py
import gradio as gr
import os
import time
from train_vlm import train_vlm_stage
from transformers import AutoImageProcessor, AutoTokenizer
from custom_vlm import CustomScratchVLM
import torch
CHECKPOINT_ROOT = "./checkpoints"
os.makedirs(CHECKPOINT_ROOT, exist_ok=True)
current_stage = 0
model = None
image_processor = None
tokenizer = None
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"๐Ÿ–ฅ๏ธ Running on device: {device}")
if device == "cuda": print(f"๐ŸŽฎ GPU: {torch.cuda.get_device_name(0)}")
def load_model_for_stage(stage):
global model, image_processor, tokenizer, current_stage
current_stage = stage
ckpt_path = f"{CHECKPOINT_ROOT}/stage_{stage}"
if os.path.exists(os.path.join(ckpt_path, "config.json")):
print(f"โœ… Loading FROM-SCRATCH checkpoint: Stage {stage}")
if model is not None: del model
if device == "cuda": torch.cuda.empty_cache()
model = CustomScratchVLM.from_pretrained(ckpt_path).to(device).eval()
image_processor = AutoImageProcessor.from_pretrained(ckpt_path)
tokenizer = AutoTokenizer.from_pretrained(ckpt_path)
else:
print(f"โš ๏ธ No checkpoint for Stage {stage} โ€” model is not loaded.")
model, image_processor, tokenizer = None, None, None
def chat_with_image(image, text, chat_history):
if not all([model, image_processor, tokenizer]):
return "", chat_history + [{"role": "assistant", "content": "Model is not loaded or is currently training. Please wait."}]
if image is None:
return "", chat_history + [{"role": "user", "content": text}, {"role": "assistant", "content": "Please upload an image."}]
try:
pixel_values = image_processor(image, return_tensors="pt").pixel_values.to(device)
# For inference, we do not include the <IMAGE> token in the text prompt
prompt = f"USER: \nQuestion: {text}\nASSISTANT:"
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs.input_ids.to(device)
attention_mask = inputs.attention_mask.to(device)
output_ids = model.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=256,
do_sample=True,
temperature=0.7,
pad_token_id=tokenizer.eos_token_id
)
# Decode only the newly generated tokens
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
chat_history.append({"role": "user", "content": text})
chat_history.append({"role": "assistant", "content": response or "[No response generated]"})
return "", chat_history
except Exception as e:
return "", chat_history + [{"role": "user", "content": text}, {"role": "assistant", "content": f"โš ๏ธ Error: {e}"}]
def run_autonomous_training_and_update_ui():
yield "๐Ÿš€ Initializing From-Scratch Trainer..."
for stage in [1, 2, 3]:
ckpt_path = f"{CHECKPOINT_ROOT}/stage_{stage}"
if os.path.exists(os.path.join(ckpt_path, "config.json")):
status_message = f"โญ๏ธ Stage {stage} already trained โ€” loading..."
yield status_message
load_model_for_stage(stage)
continue
status_message = f"โ–ถ๏ธ AUTO-TRAINING FROM SCRATCH: Stage {stage}"
yield status_message
try:
train_vlm_stage(stage, ckpt_path)
status_message = f"โœ… Stage {stage} completed! Loading new model..."
yield status_message
load_model_for_stage(stage)
except Exception as e:
status_message = f"โŒ Stage {stage} failed: {e}"
yield status_message; raise e # Stop execution on failure
yield "๐ŸŽ‰ COCONUT-VLM Training Complete โ€” All 3 Stages Finished!"
with gr.Blocks(title="๐Ÿฅฅ COCONUT-VLM From Scratch") as demo:
gr.Markdown("# ๐Ÿฅฅ COCONUT-VLM: Autonomous Trainer (From Scratch)")
gr.Markdown("Model is training itself **from random initialization**. You can interact with the latest trained model.")
with gr.Row():
with gr.Column(scale=1):
status = gr.Textbox(label="Training Status", value="Waiting to start...", interactive=False, lines=10)
with gr.Column(scale=2):
image_input = gr.Image(type="pil", label="Upload Image")
chatbot = gr.Chatbot(label="Chat with the VLM", height=400)
msg = gr.Textbox(label="Ask a question")
clear = gr.Button("Clear Chat")
msg.submit(chat_with_image, [image_input, msg, chatbot], [msg, chatbot])
clear.click(lambda: (None, None, []), None, [image_input, msg, chatbot])
demo.load(fn=run_autonomous_training_and_update_ui, inputs=None, outputs=status)
demo.queue().launch(debug=True)