Spaces:
Sleeping
Sleeping
Update train_vlm.py
Browse files- train_vlm.py +42 -24
train_vlm.py
CHANGED
|
@@ -27,31 +27,39 @@ def get_processors_and_model(config):
|
|
| 27 |
|
| 28 |
return image_processor, tokenizer, model
|
| 29 |
|
| 30 |
-
def load_and_prepare_dataset(stage, image_processor, tokenizer, model, split="train[:
|
| 31 |
-
# ---
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
dataset = load_dataset("facebook/textvqa", split=split, trust_remote_code=True)
|
| 35 |
print("Dataset loaded successfully.")
|
| 36 |
|
| 37 |
IMAGE_TOKEN = "<IMAGE>"
|
| 38 |
-
TEXT_MAX_LENGTH =
|
| 39 |
NUM_IMAGE_PATCHES = (image_processor.size['height'] // image_processor.patch_size) ** 2
|
| 40 |
FINAL_MAX_LENGTH = TEXT_MAX_LENGTH - 1 + NUM_IMAGE_PATCHES
|
| 41 |
|
| 42 |
def preprocess_function(examples):
|
| 43 |
image = examples['image'].convert("RGB")
|
| 44 |
-
|
| 45 |
-
|
|
|
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
tokenized = tokenizer(full_text, max_length=TEXT_MAX_LENGTH, truncation=True)
|
| 56 |
input_ids = torch.tensor(tokenized.input_ids)
|
| 57 |
|
|
@@ -61,12 +69,21 @@ def load_and_prepare_dataset(stage, image_processor, tokenizer, model, split="tr
|
|
| 61 |
return None
|
| 62 |
|
| 63 |
labels = input_ids.clone()
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
if (labels[i:i+len(assistant_marker)] == torch.tensor(assistant_marker)).all():
|
| 67 |
-
labels[:i+len(assistant_marker)] = -100
|
| 68 |
-
break
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
pre_labels = labels[:image_token_idx]
|
| 71 |
post_labels = labels[image_token_idx+1:]
|
| 72 |
image_labels_pad = torch.full((NUM_IMAGE_PATCHES,), -100, dtype=torch.long)
|
|
@@ -95,20 +112,21 @@ def load_and_prepare_dataset(stage, image_processor, tokenizer, model, split="tr
|
|
| 95 |
return processed_dataset.filter(lambda x: x is not None)
|
| 96 |
|
| 97 |
def train_vlm_stage(stage, output_dir, resume_from=None):
|
| 98 |
-
print(f"🚀 Starting VLM Stage {stage}
|
| 99 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 100 |
|
| 101 |
vlm_config = VLMConfig()
|
| 102 |
image_processor, tokenizer, model = get_processors_and_model(vlm_config)
|
| 103 |
model.to(device)
|
| 104 |
|
| 105 |
-
|
|
|
|
| 106 |
|
| 107 |
training_args = TrainingArguments(
|
| 108 |
output_dir=output_dir,
|
| 109 |
per_device_train_batch_size=1,
|
| 110 |
gradient_accumulation_steps=8,
|
| 111 |
-
num_train_epochs=
|
| 112 |
learning_rate=5e-5,
|
| 113 |
fp16=(device == "cuda"),
|
| 114 |
bf16=(device == "cuda" and torch.cuda.is_bf16_supported()),
|
|
|
|
| 27 |
|
| 28 |
return image_processor, tokenizer, model
|
| 29 |
|
| 30 |
+
def load_and_prepare_dataset(stage, image_processor, tokenizer, model, split="train[:200]"):
|
| 31 |
+
# --- USING THE DATASET YOU SPECIFIED ---
|
| 32 |
+
print("Loading dataset 'zera09/lmarena-ai_VisionArena-Chat-en'...")
|
| 33 |
+
dataset = load_dataset("zera09/lmarena-ai_VisionArena-Chat-en", split=split)
|
|
|
|
| 34 |
print("Dataset loaded successfully.")
|
| 35 |
|
| 36 |
IMAGE_TOKEN = "<IMAGE>"
|
| 37 |
+
TEXT_MAX_LENGTH = 256
|
| 38 |
NUM_IMAGE_PATCHES = (image_processor.size['height'] // image_processor.patch_size) ** 2
|
| 39 |
FINAL_MAX_LENGTH = TEXT_MAX_LENGTH - 1 + NUM_IMAGE_PATCHES
|
| 40 |
|
| 41 |
def preprocess_function(examples):
|
| 42 |
image = examples['image'].convert("RGB")
|
| 43 |
+
# --- USING THE CONVERSATION FORMAT YOU PROVIDED ---
|
| 44 |
+
# We select 'conversation_a' and parse it as a list of lists of dicts.
|
| 45 |
+
conversation = examples['conversation_a']
|
| 46 |
|
| 47 |
+
full_text = ""
|
| 48 |
+
is_first_user_turn = True
|
| 49 |
+
for turn_list in conversation:
|
| 50 |
+
if not turn_list: continue
|
| 51 |
+
turn = turn_list[0]
|
| 52 |
+
|
| 53 |
+
role = turn['role'].upper()
|
| 54 |
+
content = turn['content']
|
| 55 |
+
|
| 56 |
+
if role == "USER" and is_first_user_turn:
|
| 57 |
+
full_text += f"USER: {IMAGE_TOKEN}\n{content}\n"
|
| 58 |
+
is_first_user_turn = False
|
| 59 |
+
else:
|
| 60 |
+
full_text += f"{role}: {content}\n"
|
| 61 |
+
|
| 62 |
+
full_text += tokenizer.eos_token
|
| 63 |
tokenized = tokenizer(full_text, max_length=TEXT_MAX_LENGTH, truncation=True)
|
| 64 |
input_ids = torch.tensor(tokenized.input_ids)
|
| 65 |
|
|
|
|
| 69 |
return None
|
| 70 |
|
| 71 |
labels = input_ids.clone()
|
| 72 |
+
assistant_marker_ids = tokenizer("ASSISTANT:", add_special_tokens=False).input_ids
|
| 73 |
+
is_assistant_section = torch.zeros_like(labels, dtype=torch.bool)
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
+
for i in range(len(labels) - len(assistant_marker_ids) + 1):
|
| 76 |
+
if (labels[i:i+len(assistant_marker_ids)] == torch.tensor(assistant_marker_ids)).all():
|
| 77 |
+
end_idx = len(labels)
|
| 78 |
+
user_marker_ids = tokenizer("USER:", add_special_tokens=False).input_ids
|
| 79 |
+
for j in range(i + 1, len(labels) - len(user_marker_ids) + 1):
|
| 80 |
+
if (labels[j:j+len(user_marker_ids)] == torch.tensor(user_marker_ids)).all():
|
| 81 |
+
end_idx = j
|
| 82 |
+
break
|
| 83 |
+
is_assistant_section[i:end_idx] = True
|
| 84 |
+
|
| 85 |
+
labels[~is_assistant_section] = -100
|
| 86 |
+
|
| 87 |
pre_labels = labels[:image_token_idx]
|
| 88 |
post_labels = labels[image_token_idx+1:]
|
| 89 |
image_labels_pad = torch.full((NUM_IMAGE_PATCHES,), -100, dtype=torch.long)
|
|
|
|
| 112 |
return processed_dataset.filter(lambda x: x is not None)
|
| 113 |
|
| 114 |
def train_vlm_stage(stage, output_dir, resume_from=None):
|
| 115 |
+
print(f"🚀 Starting VLM Conversational Training Stage {stage} FROM SCRATCH...")
|
| 116 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 117 |
|
| 118 |
vlm_config = VLMConfig()
|
| 119 |
image_processor, tokenizer, model = get_processors_and_model(vlm_config)
|
| 120 |
model.to(device)
|
| 121 |
|
| 122 |
+
split = f"train[{200*(stage-1)}:{200*stage}]"
|
| 123 |
+
tokenized_dataset = load_and_prepare_dataset(stage, image_processor, tokenizer, model, split=split)
|
| 124 |
|
| 125 |
training_args = TrainingArguments(
|
| 126 |
output_dir=output_dir,
|
| 127 |
per_device_train_batch_size=1,
|
| 128 |
gradient_accumulation_steps=8,
|
| 129 |
+
num_train_epochs=3,
|
| 130 |
learning_rate=5e-5,
|
| 131 |
fp16=(device == "cuda"),
|
| 132 |
bf16=(device == "cuda" and torch.cuda.is_bf16_supported()),
|