Spaces:
Sleeping
Sleeping
Update train_vlm.py
Browse files- train_vlm.py +9 -17
train_vlm.py
CHANGED
|
@@ -28,7 +28,11 @@ def get_processors_and_model(config):
|
|
| 28 |
return image_processor, tokenizer, model
|
| 29 |
|
| 30 |
def load_and_prepare_dataset(stage, image_processor, tokenizer, model, split="train[:50]"):
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
IMAGE_TOKEN = "<IMAGE>"
|
| 34 |
TEXT_MAX_LENGTH = 128
|
|
@@ -48,53 +52,41 @@ def load_and_prepare_dataset(stage, image_processor, tokenizer, model, split="tr
|
|
| 48 |
prompt = f"USER: {IMAGE_TOKEN}\n{question}\nASSISTANT: The final answer is: {answer}."
|
| 49 |
|
| 50 |
full_text = prompt + tokenizer.eos_token
|
| 51 |
-
|
| 52 |
-
# Tokenize text part first, up to a max text length
|
| 53 |
tokenized = tokenizer(full_text, max_length=TEXT_MAX_LENGTH, truncation=True)
|
| 54 |
input_ids = torch.tensor(tokenized.input_ids)
|
| 55 |
|
| 56 |
-
# --- CRITICAL FIX: Build Labels and Attention Mask for the FINAL sequence length ---
|
| 57 |
-
|
| 58 |
-
# 1. Find the location of the image token placeholder
|
| 59 |
try:
|
| 60 |
image_token_idx = torch.where(input_ids == model.image_token_id)[0][0].item()
|
| 61 |
-
except IndexError:
|
| 62 |
return None
|
| 63 |
|
| 64 |
-
# 2. Build the LABELS tensor
|
| 65 |
labels = input_ids.clone()
|
| 66 |
-
# Mask out the prompt part (everything before and including "ASSISTANT:")
|
| 67 |
assistant_marker = tokenizer("ASSISTANT:", add_special_tokens=False).input_ids
|
| 68 |
for i in range(len(labels) - len(assistant_marker) + 1):
|
| 69 |
if (labels[i:i+len(assistant_marker)] == torch.tensor(assistant_marker)).all():
|
| 70 |
labels[:i+len(assistant_marker)] = -100
|
| 71 |
break
|
| 72 |
|
| 73 |
-
# Expand labels to the final length, inserting padding for the image patches
|
| 74 |
pre_labels = labels[:image_token_idx]
|
| 75 |
post_labels = labels[image_token_idx+1:]
|
| 76 |
-
# The image part of the labels should be all -100 (we don't predict image patches)
|
| 77 |
image_labels_pad = torch.full((NUM_IMAGE_PATCHES,), -100, dtype=torch.long)
|
| 78 |
|
| 79 |
-
# Combine and pad/truncate to FINAL_MAX_LENGTH
|
| 80 |
final_labels = torch.cat([pre_labels, image_labels_pad, post_labels], dim=0)
|
| 81 |
-
final_labels = torch.nn.functional.pad(final_labels, (0, FINAL_MAX_LENGTH - len(final_labels)), value=-100)
|
| 82 |
|
| 83 |
-
# 3. Build the ATTENTION MASK in the same way
|
| 84 |
attention_mask = torch.ones_like(input_ids)
|
| 85 |
pre_mask = attention_mask[:image_token_idx]
|
| 86 |
post_mask = attention_mask[image_token_idx+1:]
|
| 87 |
image_mask = torch.ones(NUM_IMAGE_PATCHES, dtype=torch.long)
|
| 88 |
|
| 89 |
final_attention_mask = torch.cat([pre_mask, image_mask, post_mask], dim=0)
|
| 90 |
-
final_attention_mask = torch.nn.functional.pad(final_attention_mask, (0, FINAL_MAX_LENGTH - len(final_attention_mask)), value=0)
|
| 91 |
|
| 92 |
-
# 4. Process the image
|
| 93 |
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
| 94 |
|
| 95 |
return {
|
| 96 |
"pixel_values": pixel_values.squeeze(0),
|
| 97 |
-
"input_ids": input_ids,
|
| 98 |
"attention_mask": final_attention_mask,
|
| 99 |
"labels": final_labels
|
| 100 |
}
|
|
|
|
| 28 |
return image_processor, tokenizer, model
|
| 29 |
|
| 30 |
def load_and_prepare_dataset(stage, image_processor, tokenizer, model, split="train[:50]"):
|
| 31 |
+
# --- THIS IS THE FIX ---
|
| 32 |
+
# Using the official facebook/textvqa dataset with the required trust_remote_code flag.
|
| 33 |
+
print(f"Attempting to load dataset 'facebook/textvqa' with trust_remote_code=True...")
|
| 34 |
+
dataset = load_dataset("facebook/textvqa", split=split, trust_remote_code=True)
|
| 35 |
+
print("Dataset loaded successfully.")
|
| 36 |
|
| 37 |
IMAGE_TOKEN = "<IMAGE>"
|
| 38 |
TEXT_MAX_LENGTH = 128
|
|
|
|
| 52 |
prompt = f"USER: {IMAGE_TOKEN}\n{question}\nASSISTANT: The final answer is: {answer}."
|
| 53 |
|
| 54 |
full_text = prompt + tokenizer.eos_token
|
|
|
|
|
|
|
| 55 |
tokenized = tokenizer(full_text, max_length=TEXT_MAX_LENGTH, truncation=True)
|
| 56 |
input_ids = torch.tensor(tokenized.input_ids)
|
| 57 |
|
|
|
|
|
|
|
|
|
|
| 58 |
try:
|
| 59 |
image_token_idx = torch.where(input_ids == model.image_token_id)[0][0].item()
|
| 60 |
+
except IndexError:
|
| 61 |
return None
|
| 62 |
|
|
|
|
| 63 |
labels = input_ids.clone()
|
|
|
|
| 64 |
assistant_marker = tokenizer("ASSISTANT:", add_special_tokens=False).input_ids
|
| 65 |
for i in range(len(labels) - len(assistant_marker) + 1):
|
| 66 |
if (labels[i:i+len(assistant_marker)] == torch.tensor(assistant_marker)).all():
|
| 67 |
labels[:i+len(assistant_marker)] = -100
|
| 68 |
break
|
| 69 |
|
|
|
|
| 70 |
pre_labels = labels[:image_token_idx]
|
| 71 |
post_labels = labels[image_token_idx+1:]
|
|
|
|
| 72 |
image_labels_pad = torch.full((NUM_IMAGE_PATCHES,), -100, dtype=torch.long)
|
| 73 |
|
|
|
|
| 74 |
final_labels = torch.cat([pre_labels, image_labels_pad, post_labels], dim=0)
|
| 75 |
+
final_labels = torch.nn.functional.pad(final_labels, (0, FINAL_MAX_LENGTH - len(final_labels)), value=-100)[:FINAL_MAX_LENGTH]
|
| 76 |
|
|
|
|
| 77 |
attention_mask = torch.ones_like(input_ids)
|
| 78 |
pre_mask = attention_mask[:image_token_idx]
|
| 79 |
post_mask = attention_mask[image_token_idx+1:]
|
| 80 |
image_mask = torch.ones(NUM_IMAGE_PATCHES, dtype=torch.long)
|
| 81 |
|
| 82 |
final_attention_mask = torch.cat([pre_mask, image_mask, post_mask], dim=0)
|
| 83 |
+
final_attention_mask = torch.nn.functional.pad(final_attention_mask, (0, FINAL_MAX_LENGTH - len(final_attention_mask)), value=0)[:FINAL_MAX_LENGTH]
|
| 84 |
|
|
|
|
| 85 |
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
| 86 |
|
| 87 |
return {
|
| 88 |
"pixel_values": pixel_values.squeeze(0),
|
| 89 |
+
"input_ids": input_ids,
|
| 90 |
"attention_mask": final_attention_mask,
|
| 91 |
"labels": final_labels
|
| 92 |
}
|