Taf2023's picture
Deploy Gradio app with multiple files
792b77a verified
import gradio as gr
import spaces
import torch
from diffusers import DiffusionPipeline
import numpy as np
from PIL import Image
import tempfile
import os
from moviepy.editor import ImageSequenceClip, AudioFileClip
import soundfile as sf
from transformers import pipeline
import time
from typing import List, Tuple, Optional
import json
from config import Config
from utils import VideoGenerator, AudioGenerator, ImageGenerator
# Initialize generators
image_gen = ImageGenerator()
audio_gen = AudioGenerator()
video_gen = VideoGenerator()
@spaces.GPU(duration=1500)
def compile_transformer():
"""Compile the Stable Diffusion transformer for faster inference"""
with spaces.aoti_capture(image_gen.pipe.transformer) as call:
image_gen.pipe("test compilation prompt")
exported = torch.export.export(
image_gen.pipe.transformer,
args=call.args,
kwargs=call.kwargs,
)
return spaces.aoti_compile(exported)
# Compile during startup
print("Compiling AI models for optimal performance...")
compiled_transformer = compile_transformer()
spaces.aoti_apply(compiled_transformer, image_gen.pipe.transformer)
print("βœ… Models compiled successfully!")
@spaces.GPU(duration=120)
def generate_video(
prompt: str,
duration: int,
fps: int,
audio_type: str,
voice_gender: str,
music_style: str,
num_images: int,
image_size: int,
motion_strength: float,
progress=gr.Progress()
) -> str:
"""
Generate a video from text prompt with AI-generated images and audio
Args:
prompt: Text description for the video content
duration: Duration of the video in seconds
fps: Frames per second for the video
audio_type: Type of audio to generate (narration/music/both)
voice_gender: Gender for voice narration
music_style: Style of background music
num_images: Number of unique images to generate
image_size: Size of generated images
motion_strength: Strength of motion between frames
Returns:
Path to the generated video file
"""
try:
progress(0.1, desc="Starting video generation...")
# Calculate timing
total_frames = duration * fps
frames_per_image = total_frames // num_images
progress(0.2, desc="Generating images...")
# Generate images
images = []
for i in range(num_images):
# Slightly vary the prompt for each image
varied_prompt = f"{prompt}, frame {i+1}, cinematic lighting"
image = image_gen.generate_image(
prompt=varied_prompt,
size=(image_size, image_size)
)
images.append(image)
progress(0.2 + (i / num_images) * 0.3, desc=f"Generated image {i+1}/{num_images}")
progress(0.5, desc="Generating audio...")
# Generate audio
audio_path = None
if audio_type in ["narration", "both"]:
narration_path = audio_gen.generate_narration(
text=prompt,
gender=voice_gender,
duration=duration
)
audio_path = narration_path
if audio_type in ["music", "both"]:
music_path = audio_gen.generate_music(
style=music_style,
duration=duration
)
if audio_path and audio_type == "both":
# Mix narration and music
audio_path = audio_gen.mix_audio(audio_path, music_path)
elif not audio_path:
audio_path = music_path
progress(0.7, desc="Creating video frames...")
# Create video frames with motion
video_frames = video_gen.create_motion_frames(
images=images,
frames_per_image=frames_per_image,
motion_strength=motion_strength
)
progress(0.9, desc="Composing final video...")
# Create video
video_path = video_gen.create_video(
frames=video_frames,
fps=fps,
audio_path=audio_path,
duration=duration
)
progress(1.0, desc="Video generation complete!")
return video_path
except Exception as e:
raise gr.Error(f"Error generating video: {str(e)}")
@spaces.GPU(duration=60)
def generate_sample_image(prompt: str, style: str) -> Image.Image:
"""Generate a sample image for preview"""
styled_prompt = f"{prompt}, {style} style, high quality, detailed"
return image_gen.generate_image(
prompt=styled_prompt,
size=(512, 512)
)
def create_demo():
"""Create the Gradio demo interface"""
with gr.Blocks(
title="AI Video Generator",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
}
.header-text {
text-align: center;
margin-bottom: 2rem;
}
.preview-box {
border: 2px dashed #ccc;
border-radius: 10px;
padding: 20px;
text-align: center;
}
"""
) as demo:
gr.HTML("""
<div class="header-text">
<h1>🎬 AI Video Generator</h1>
<p>Create stunning videos from text prompts using AI-powered image and audio generation</p>
<p><a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank">Built with anycoder</a></p>
</div>
""")
with gr.Tabs():
with gr.TabItem("πŸŽ₯ Generate Video"):
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### πŸ“ Video Description")
prompt_input = gr.Textbox(
label="Enter your video concept",
placeholder="A serene landscape with mountains and a lake at sunset...",
lines=3,
value="A beautiful forest with sunlight filtering through the trees, birds flying, peaceful nature scene"
)
gr.Markdown("### βš™οΈ Video Settings")
with gr.Row():
duration_slider = gr.Slider(
minimum=5,
maximum=30,
value=10,
step=1,
label="Duration (seconds)"
)
fps_slider = gr.Slider(
minimum=12,
maximum=30,
value=24,
step=1,
label="FPS"
)
with gr.Row():
num_images_slider = gr.Slider(
minimum=3,
maximum=10,
value=5,
step=1,
label="Number of Scenes"
)
image_size_slider = gr.Slider(
minimum=256,
maximum=768,
value=512,
step=128,
label="Image Size"
)
motion_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.3,
step=0.1,
label="Motion Strength"
)
with gr.Column(scale=1):
gr.Markdown("### 🎡 Audio Settings")
audio_type_radio = gr.Radio(
choices=["narration", "music", "both"],
value="both",
label="Audio Type"
)
voice_radio = gr.Radio(
choices=["male", "female"],
value="female",
label="Voice Gender"
)
music_dropdown = gr.Dropdown(
choices=["ambient", "cinematic", "upbeat", "peaceful", "dramatic"],
value="peaceful",
label="Music Style"
)
generate_btn = gr.Button(
"🎬 Generate Video",
variant="primary",
size="lg"
)
with gr.Column():
video_output = gr.Video(
label="Generated Video",
visible=False
)
status_text = gr.Textbox(
label="Status",
visible=False,
interactive=False
)
with gr.TabItem("πŸ–ΌοΈ Image Preview"):
gr.Markdown("### Preview image generation before creating the full video")
with gr.Row():
preview_prompt = gr.Textbox(
label="Test Prompt",
placeholder="Enter a prompt to test image generation...",
value="A majestic dragon flying over a castle"
)
with gr.Row():
style_dropdown = gr.Dropdown(
choices=["photorealistic", "anime", "oil painting", "watercolor", "3D render"],
value="photorealistic",
label="Art Style"
)
preview_btn = gr.Button("Generate Preview", variant="secondary")
preview_image = gr.Image(
label="Image Preview",
type="pil",
elem_classes=["preview-box"]
)
# Example prompts
gr.Markdown("### πŸ’‘ Example Prompts")
examples = gr.Examples(
examples=[
["A futuristic city with flying cars and neon lights at night", 15, 24, "both", "female", "cinematic", 5, 512, 0.5],
["A peaceful beach with waves crashing and palm trees swaying", 10, 24, "music", "male", "peaceful", 4, 512, 0.3],
["A magical forest with glowing mushrooms and fairy lights", 12, 24, "both", "female", "ambient", 6, 512, 0.4],
["A bustling marketplace in ancient Rome", 8, 24, "narration", "male", "dramatic", 4, 512, 0.6],
],
inputs=[prompt_input, duration_slider, fps_slider, audio_type_radio, voice_radio, music_dropdown, num_images_slider, image_size_slider, motion_slider],
outputs=[video_output],
fn=generate_video,
)
# Event handlers
generate_btn.click(
fn=generate_video,
inputs=[
prompt_input, duration_slider, fps_slider,
audio_type_radio, voice_radio, music_dropdown,
num_images_slider, image_size_slider, motion_slider
],
outputs=[video_output],
show_progress=True
).then(
fn=lambda: "Video generation complete! You can now download your video.",
outputs=[status_text]
)
preview_btn.click(
fn=generate_sample_image,
inputs=[preview_prompt, style_dropdown],
outputs=[preview_image]
)
# Show status text when generation starts
generate_btn.click(
fn=lambda: "Starting video generation... This may take a few minutes.",
outputs=[status_text]
)
# Make video output visible after generation
generate_btn.click(
fn=lambda: gr.Video(visible=True),
outputs=[video_output]
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch(
share=True,
show_error=True,
show_tips=True
)