File size: 5,644 Bytes
9009faa
 
 
 
 
 
506cefd
 
 
9009faa
 
 
 
506cefd
9009faa
 
 
506cefd
9009faa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
506cefd
9009faa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
506cefd
9009faa
506cefd
9009faa
 
 
 
 
 
 
 
 
 
 
506cefd
9009faa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
506cefd
 
 
 
 
9009faa
 
 
 
 
 
 
506cefd
 
9009faa
 
506cefd
9009faa
 
 
 
 
 
 
 
 
 
 
506cefd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9009faa
 
506cefd
9009faa
 
506cefd
9009faa
 
 
 
506cefd
 
 
 
 
9009faa
 
 
 
506cefd
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import gradio as gr
import re
from urllib.parse import urlparse
import csv
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import torch
import os

# URL model
url_tokenizer = AutoTokenizer.from_pretrained("najla45/phishing_detection_fine_tuned_bert")
url_model = AutoModelForSequenceClassification.from_pretrained("najla45/phishing_detection_fine_tuned_bert")
url_classifier = pipeline("text-classification", model=url_model, tokenizer=url_tokenizer)

# Email model
email_tokenizer = AutoTokenizer.from_pretrained("cybersectony/phishing-email-detection-distilbert_v2.4.1")
email_model = AutoModelForSequenceClassification.from_pretrained("cybersectony/phishing-email-detection-distilbert_v2.4.1")

# Logic for checking the state of URL
def is_phishing_url(url):
    suspicious_keywords = ['secure', 'account', 'update', 'free', 'login', 'verify', 'banking']
    domain = urlparse(url).netloc
    path = urlparse(url).path

    score = 0
    if re.match(r'https?://\d{1,3}(\.\d{1,3}){3}', url):
        score += 2
    if '-' in domain:
        score += 1
    if not url.startswith("https://"):
        score += 3
    if any(keyword in url.lower() for keyword in suspicious_keywords):
        score += 2
    if len(url) > 75:
        score += 1
    if '@' in url:
        score += 2

    return score

# Logic checking for phishing email
def predict_email(email_text):
    inputs = email_tokenizer(email_text, return_tensors="pt", truncation=True, max_length=512)
    with torch.no_grad():
        outputs = email_model(**inputs)
        probs = torch.nn.functional.softmax(outputs.logits, dim=-1)[0].tolist()

    labels = {
        "legitimate_email": probs[0],
        "phishing_url": probs[1],
        "legitimate_url": probs[2],
        "phishing_url_alt": probs[3]
    }

    max_label, max_score = max(labels.items(), key=lambda x: x[1])
    return max_label, max_score, labels

# Logging all data to CSV file
LOG_FILE = os.path.join(os.path.dirname(__file__), "phishing_log.csv")

def log_to_csv(url, rule_score, bert_label, bert_score, final_decision):
    try:
        file_exists = os.path.isfile(LOG_FILE)
        with open(LOG_FILE, "a", newline='') as f:
            writer = csv.writer(f)
            if not file_exists:
                writer.writerow(["Input", "Rule Score", "BERT Label", "Confidence", "Final Decision"])
            writer.writerow([url, rule_score, bert_label, f"{bert_score:.2f}", final_decision])
    except Exception as e:
        print(f"Error writing to CSV: {e}")

# Combining URL and email checking logic
def combined_phishing_detector(url, input_type, log=True):
    if input_type == "URL":
        rule_score = is_phishing_url(url)
        rule_result = "Phishing" if rule_score >= 3 else "Safe"

        bert_result = url_classifier(url)[0]
        label_map = {"LABEL_0": "safe", "LABEL_1": "phishing"}
        bert_label = label_map.get(bert_result["label"].upper(), "unknown")
        bert_score = bert_result["score"]

        final_decision = "Phishing" if rule_result == "Phishing" and bert_label == "phishing" and bert_score > 0.75 else "Safe"

    elif input_type == "Email/Message":
        bert_label, bert_score, bert_probs = predict_email(url)
        rule_score = "N/A"
        rule_result = "Not Applicable"
        final_decision = "Phishing" if bert_label.startswith("phishing") and bert_score > 0.7 else "Safe"
    else:
        rule_score = "N/A"
        bert_label = "unknown"
        bert_score = 0.0
        final_decision = "Safe"

    if log:
        log_to_csv(url, rule_score, bert_label, bert_score, final_decision)

    return url, rule_score, bert_label, bert_score, final_decision

def run_detector(text, input_type):
    url, rule_score, bert_label, bert_score, final_decision = combined_phishing_detector(text, input_type, log=True)

    # Add emoji based on result
    if final_decision.lower() == "phishing":
        emoji = "🚨"   # warning
    elif final_decision.lower() == "safe":
        emoji = "βœ…"  # check mark
    else:
        emoji = "❓"

    message = (
        f"{emoji} Result: {final_decision}\n"
        f"πŸ“Š Rule Score: {rule_score}\n"
        f"πŸ€– BERT Label: {bert_label}\n"
        f"πŸ” Confidence: {bert_score:.2f}"
    )
    return message, LOG_FILE

# ---------- GUI ----------
with gr.Blocks() as demo:

    # Custom font + CSS + title (no background image)
    gr.HTML("""
    <link href="https://fonts.googleapis.com/css2?family=Poppins:wght@400;500;600;700&display=swap" rel="stylesheet">
    <style>
    .gradio-container {
        background: radial-gradient(circle at top, #1e293b, #020617);
        background-attachment: fixed;
        font-family: "Poppins", sans-serif;
        color: white;
    }
    .gradio-container * {
        font-family: "Poppins", sans-serif !important;
    }
    label, .gr-textbox, .gr-button, .gr-file {
        color: white !important;
    }
    </style>
    <h1 style='text-align:center; color:white;'>πŸ” Phishing URL & Email Detector (BERT + Rules) πŸ”</h1>
    """)

    with gr.Row():
        input_text = gr.Textbox(label="Enter URL or Email", lines=5, placeholder="Paste URL or email content here...")
        input_type = gr.Radio(["URL", "Email/Message"], label="Input Type")

    result_output = gr.Textbox(label="Detection Result", lines=6, interactive=False)
    log_file_output = gr.File(label="Download Log File")

    detect_button = gr.Button("Detect")

    detect_button.click(
        fn=run_detector,
        inputs=[input_text, input_type],
        outputs=[result_output, log_file_output]
    )

demo.launch(share=True)