| # Text generation web UI | |
| A Gradio web UI for Large Language Models. | |
| Its goal is to become the [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) of text generation. | |
| | |  | | |
| |:---:|:---:| | |
| | |  | | |
| ## Features | |
| * 3 interface modes: default (two columns), notebook, and chat | |
| * Multiple model backends: [transformers](https://github.com/huggingface/transformers), [llama.cpp](https://github.com/ggerganov/llama.cpp), [ExLlama](https://github.com/turboderp/exllama), [ExLlamaV2](https://github.com/turboderp/exllamav2), [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ), [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa), [CTransformers](https://github.com/marella/ctransformers), [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) | |
| * Dropdown menu for quickly switching between different models | |
| * LoRA: load and unload LoRAs on the fly, train a new LoRA using QLoRA | |
| * Precise instruction templates for chat mode, including Llama-2-chat, Alpaca, Vicuna, WizardLM, StableLM, and many others | |
| * 4-bit, 8-bit, and CPU inference through the transformers library | |
| * Use llama.cpp models with transformers samplers (`llamacpp_HF` loader) | |
| * [Multimodal pipelines, including LLaVA and MiniGPT-4](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/multimodal) | |
| * [Extensions framework](https://github.com/oobabooga/text-generation-webui/wiki/07-%E2%80%90-Extensions) | |
| * [Custom chat characters](https://github.com/oobabooga/text-generation-webui/wiki/03-%E2%80%90-Parameters-Tab#character) | |
| * Markdown output with LaTeX rendering, to use for instance with [GALACTICA](https://github.com/paperswithcode/galai) | |
| * OpenAI-compatible API server with Chat and Completions endpoints -- see the [examples](https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API#examples) | |
| ## Documentation | |
| To learn how to use the various features, check out the Documentation: | |
| https://github.com/oobabooga/text-generation-webui/wiki | |
| ## Installation | |
| ### One-click installers | |
| 1) Clone or [download](https://github.com/oobabooga/text-generation-webui/archive/refs/heads/main.zip) the repository. | |
| 2) Run the `start_linux.sh`, `start_windows.bat`, `start_macos.sh`, or `start_wsl.bat` script depending on your OS. | |
| 3) Select your GPU vendor when asked. | |
| 4) Have fun! | |
| #### How it works | |
| The script creates a folder called `installer_files` where it sets up a Conda environment using Miniconda. The installation is self-contained: if you want to reinstall, just delete `installer_files` and run the start script again. | |
| To launch the webui in the future after it is already installed, run the same `start` script. | |
| #### Getting updates | |
| Run `update_linux.sh`, `update_windows.bat`, `update_macos.sh`, or `update_wsl.bat`. | |
| #### Running commands | |
| If you ever need to install something manually in the `installer_files` environment, you can launch an interactive shell using the cmd script: `cmd_linux.sh`, `cmd_windows.bat`, `cmd_macos.sh`, or `cmd_wsl.bat`. | |
| #### Defining command-line flags | |
| To define persistent command-line flags like `--listen` or `--api`, edit the `CMD_FLAGS.txt` file with a text editor and add them there. Flags can also be provided directly to the start scripts, for instance, `./start-linux.sh --listen`. | |
| #### Other info | |
| * There is no need to run any of those scripts as admin/root. | |
| * For additional instructions about AMD setup, WSL setup, and nvcc installation, consult [the documentation](https://github.com/oobabooga/text-generation-webui/wiki). | |
| * The installer has been tested mostly on NVIDIA GPUs. If you can find a way to improve it for your AMD/Intel Arc/Mac Metal GPU, you are highly encouraged to submit a PR to this repository. The main file to be edited is `one_click.py`. | |
| * For automated installation, you can use the `GPU_CHOICE`, `USE_CUDA118`, `LAUNCH_AFTER_INSTALL`, and `INSTALL_EXTENSIONS` environment variables. For instance: `GPU_CHOICE=A USE_CUDA118=FALSE LAUNCH_AFTER_INSTALL=FALSE INSTALL_EXTENSIONS=FALSE ./start_linux.sh`. | |
| ### Manual installation using Conda | |
| Recommended if you have some experience with the command-line. | |
| #### 0. Install Conda | |
| https://docs.conda.io/en/latest/miniconda.html | |
| On Linux or WSL, it can be automatically installed with these two commands ([source](https://educe-ubc.github.io/conda.html)): | |
| ``` | |
| curl -sL "https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh" > "Miniconda3.sh" | |
| bash Miniconda3.sh | |
| ``` | |
| #### 1. Create a new conda environment | |
| ``` | |
| conda create -n textgen python=3.11 | |
| conda activate textgen | |
| ``` | |
| #### 2. Install Pytorch | |
| | System | GPU | Command | | |
| |--------|---------|---------| | |
| | Linux/WSL | NVIDIA | `pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121` | | |
| | Linux/WSL | CPU only | `pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu` | | |
| | Linux | AMD | `pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.6` | | |
| | MacOS + MPS | Any | `pip3 install torch torchvision torchaudio` | | |
| | Windows | NVIDIA | `pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121` | | |
| | Windows | CPU only | `pip3 install torch torchvision torchaudio` | | |
| The up-to-date commands can be found here: https://pytorch.org/get-started/locally/. | |
| For NVIDIA, you may also need to manually install the CUDA runtime libraries: | |
| ``` | |
| conda install -y -c "nvidia/label/cuda-12.1.0" cuda-runtime | |
| ``` | |
| #### 3. Install the web UI | |
| ``` | |
| git clone https://github.com/oobabooga/text-generation-webui | |
| cd text-generation-webui | |
| pip install -r <requirements file according to table below> | |
| ``` | |
| Requirements file to use: | |
| | GPU | CPU | requirements file to use | | |
| |--------|---------|---------| | |
| | NVIDIA | has AVX2 | `requirements.txt` | | |
| | NVIDIA | no AVX2 | `requirements_noavx2.txt` | | |
| | AMD | has AVX2 | `requirements_amd.txt` | | |
| | AMD | no AVX2 | `requirements_amd_noavx2.txt` | | |
| | CPU only | has AVX2 | `requirements_cpu_only.txt` | | |
| | CPU only | no AVX2 | `requirements_cpu_only_noavx2.txt` | | |
| | Apple | Intel | `requirements_apple_intel.txt` | | |
| | Apple | Apple Silicon | `requirements_apple_silicon.txt` | | |
| ##### AMD GPU on Windows | |
| 1) Use `requirements_cpu_only.txt` or `requirements_cpu_only_noavx2.txt` in the command above. | |
| 2) Manually install llama-cpp-python using the appropriate command for your hardware: [Installation from PyPI](https://github.com/abetlen/llama-cpp-python#installation-with-hardware-acceleration). | |
| * Use the `LLAMA_HIPBLAS=on` toggle. | |
| * Note the [Windows remarks](https://github.com/abetlen/llama-cpp-python#windows-remarks). | |
| 3) Manually install AutoGPTQ: [Installation](https://github.com/PanQiWei/AutoGPTQ#install-from-source). | |
| * Perform the from-source installation - there are no prebuilt ROCm packages for Windows. | |
| 4) Manually install [ExLlama](https://github.com/turboderp/exllama) by simply cloning it into the `repositories` folder (it will be automatically compiled at runtime after that): | |
| ```sh | |
| cd text-generation-webui | |
| git clone https://github.com/turboderp/exllama repositories/exllama | |
| ``` | |
| ##### Older NVIDIA GPUs | |
| 1) For Kepler GPUs and older, you will need to install CUDA 11.8 instead of 12: | |
| ``` | |
| pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 | |
| conda install -y -c "nvidia/label/cuda-11.8.0" cuda-runtime | |
| ``` | |
| 2) bitsandbytes >= 0.39 may not work. In that case, to use `--load-in-8bit`, you may have to downgrade like this: | |
| * Linux: `pip install bitsandbytes==0.38.1` | |
| * Windows: `pip install https://github.com/jllllll/bitsandbytes-windows-webui/raw/main/bitsandbytes-0.38.1-py3-none-any.whl` | |
| ##### Manual install | |
| The requirments*.txt above contain various precompiled wheels. If you wish to compile things manually, or if you need to because no suitable wheels are available for your hardware, you can use `requirements_nowheels.txt` and then install your desired loaders manually. | |
| ### Alternative: Docker | |
| ``` | |
| ln -s docker/{Dockerfile,docker-compose.yml,.dockerignore} . | |
| cp docker/.env.example .env | |
| # Edit .env and set TORCH_CUDA_ARCH_LIST based on your GPU model | |
| docker compose up --build | |
| ``` | |
| * You need to have docker compose v2.17 or higher installed. See [this guide](https://github.com/oobabooga/text-generation-webui/wiki/09-%E2%80%90-Docker) for instructions. | |
| * For additional docker files, check out [this repository](https://github.com/Atinoda/text-generation-webui-docker). | |
| ### Updating the requirements | |
| From time to time, the `requirements*.txt` changes. To update, use these commands: | |
| ``` | |
| conda activate textgen | |
| cd text-generation-webui | |
| pip install -r <requirements file that you've used> --upgrade | |
| ``` | |
| ## Downloading models | |
| Models should be placed in the `text-generation-webui/models` folder. They are usually downloaded from [Hugging Face](https://huggingface.co/models?pipeline_tag=text-generation&sort=downloads). | |
| * Transformers or GPTQ models are made of several files and must be placed in a subfolder. Example: | |
| ``` | |
| text-generation-webui | |
| ├── models | |
| │ ├── lmsys_vicuna-33b-v1.3 | |
| │ │ ├── config.json | |
| │ │ ├── generation_config.json | |
| │ │ ├── pytorch_model-00001-of-00007.bin | |
| │ │ ├── pytorch_model-00002-of-00007.bin | |
| │ │ ├── pytorch_model-00003-of-00007.bin | |
| │ │ ├── pytorch_model-00004-of-00007.bin | |
| │ │ ├── pytorch_model-00005-of-00007.bin | |
| │ │ ├── pytorch_model-00006-of-00007.bin | |
| │ │ ├── pytorch_model-00007-of-00007.bin | |
| │ │ ├── pytorch_model.bin.index.json | |
| │ │ ├── special_tokens_map.json | |
| │ │ ├── tokenizer_config.json | |
| │ │ └── tokenizer.model | |
| ``` | |
| * GGUF models are a single file and should be placed directly into `models`. Example: | |
| ``` | |
| text-generation-webui | |
| ├── models | |
| │ ├── llama-2-13b-chat.Q4_K_M.gguf | |
| ``` | |
| In both cases, you can use the "Model" tab of the UI to download the model from Hugging Face automatically. It is also possible to download via the command-line with `python download-model.py organization/model` (use `--help` to see all the options). | |
| #### GPT-4chan | |
| <details> | |
| <summary> | |
| Instructions | |
| </summary> | |
| [GPT-4chan](https://huggingface.co/ykilcher/gpt-4chan) has been shut down from Hugging Face, so you need to download it elsewhere. You have two options: | |
| * Torrent: [16-bit](https://archive.org/details/gpt4chan_model_float16) / [32-bit](https://archive.org/details/gpt4chan_model) | |
| * Direct download: [16-bit](https://theswissbay.ch/pdf/_notpdf_/gpt4chan_model_float16/) / [32-bit](https://theswissbay.ch/pdf/_notpdf_/gpt4chan_model/) | |
| The 32-bit version is only relevant if you intend to run the model in CPU mode. Otherwise, you should use the 16-bit version. | |
| After downloading the model, follow these steps: | |
| 1. Place the files under `models/gpt4chan_model_float16` or `models/gpt4chan_model`. | |
| 2. Place GPT-J 6B's config.json file in that same folder: [config.json](https://huggingface.co/EleutherAI/gpt-j-6B/raw/main/config.json). | |
| 3. Download GPT-J 6B's tokenizer files (they will be automatically detected when you attempt to load GPT-4chan): | |
| ``` | |
| python download-model.py EleutherAI/gpt-j-6B --text-only | |
| ``` | |
| When you load this model in default or notebook modes, the "HTML" tab will show the generated text in 4chan format: | |
|  | |
| </details> | |
| ## Starting the web UI | |
| conda activate textgen | |
| cd text-generation-webui | |
| python server.py | |
| Then browse to | |
| `http://localhost:7860/?__theme=dark` | |
| Optionally, you can use the following command-line flags: | |
| #### Basic settings | |
| | Flag | Description | | |
| |--------------------------------------------|-------------| | |
| | `-h`, `--help` | show this help message and exit | | |
| | `--multi-user` | Multi-user mode. Chat histories are not saved or automatically loaded. WARNING: this is likely not safe for sharing publicly. | | |
| | `--character CHARACTER` | The name of the character to load in chat mode by default. | | |
| | `--model MODEL` | Name of the model to load by default. | | |
| | `--lora LORA [LORA ...]` | The list of LoRAs to load. If you want to load more than one LoRA, write the names separated by spaces. | | |
| | `--model-dir MODEL_DIR` | Path to directory with all the models. | | |
| | `--lora-dir LORA_DIR` | Path to directory with all the loras. | | |
| | `--model-menu` | Show a model menu in the terminal when the web UI is first launched. | | |
| | `--settings SETTINGS_FILE` | Load the default interface settings from this yaml file. See `settings-template.yaml` for an example. If you create a file called `settings.yaml`, this file will be loaded by default without the need to use the `--settings` flag. | | |
| | `--extensions EXTENSIONS [EXTENSIONS ...]` | The list of extensions to load. If you want to load more than one extension, write the names separated by spaces. | | |
| | `--verbose` | Print the prompts to the terminal. | | |
| | `--chat-buttons` | Show buttons on the chat tab instead of a hover menu. | | |
| #### Model loader | |
| | Flag | Description | | |
| |--------------------------------------------|-------------| | |
| | `--loader LOADER` | Choose the model loader manually, otherwise, it will get autodetected. Valid options: transformers, exllama_hf, exllamav2_hf, exllama, exllamav2, autogptq, gptq-for-llama, llama.cpp, llamacpp_hf, ctransformers, autoawq. | | |
| #### Accelerate/transformers | |
| | Flag | Description | | |
| |---------------------------------------------|-------------| | |
| | `--cpu` | Use the CPU to generate text. Warning: Training on CPU is extremely slow. | | |
| | `--auto-devices` | Automatically split the model across the available GPU(s) and CPU. | | |
| | `--gpu-memory GPU_MEMORY [GPU_MEMORY ...]` | Maximum GPU memory in GiB to be allocated per GPU. Example: --gpu-memory 10 for a single GPU, --gpu-memory 10 5 for two GPUs. You can also set values in MiB like --gpu-memory 3500MiB. | | |
| | `--cpu-memory CPU_MEMORY` | Maximum CPU memory in GiB to allocate for offloaded weights. Same as above. | | |
| | `--disk` | If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk. | | |
| | `--disk-cache-dir DISK_CACHE_DIR` | Directory to save the disk cache to. Defaults to "cache". | | |
| | `--load-in-8bit` | Load the model with 8-bit precision (using bitsandbytes). | | |
| | `--bf16` | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. | | |
| | `--no-cache` | Set `use_cache` to `False` while generating text. This reduces VRAM usage slightly, but it comes at a performance cost. | | |
| | `--xformers` | Use xformer's memory efficient attention. This is really old and probably doesn't do anything. | | |
| | `--sdp-attention` | Use PyTorch 2.0's SDP attention. Same as above. | | |
| | `--trust-remote-code` | Set `trust_remote_code=True` while loading the model. Necessary for some models. | | |
| | `--use_fast` | Set `use_fast=True` while loading the tokenizer. | | |
| | `--use_flash_attention_2` | Set use_flash_attention_2=True while loading the model. | | |
| #### Accelerate 4-bit | |
| ⚠️ Requires minimum compute of 7.0 on Windows at the moment. | |
| | Flag | Description | | |
| |---------------------------------------------|-------------| | |
| | `--load-in-4bit` | Load the model with 4-bit precision (using bitsandbytes). | | |
| | `--use_double_quant` | use_double_quant for 4-bit. | | |
| | `--compute_dtype COMPUTE_DTYPE` | compute dtype for 4-bit. Valid options: bfloat16, float16, float32. | | |
| | `--quant_type QUANT_TYPE` | quant_type for 4-bit. Valid options: nf4, fp4. | | |
| #### llama.cpp | |
| | Flag | Description | | |
| |-------------|-------------| | |
| | `--n_ctx N_CTX` | Size of the prompt context. | | |
| | `--threads` | Number of threads to use. | | |
| | `--threads-batch THREADS_BATCH` | Number of threads to use for batches/prompt processing. | | |
| | `--no_mul_mat_q` | Disable the mulmat kernels. | | |
| | `--n_batch` | Maximum number of prompt tokens to batch together when calling llama_eval. | | |
| | `--no-mmap` | Prevent mmap from being used. | | |
| | `--mlock` | Force the system to keep the model in RAM. | | |
| | `--n-gpu-layers N_GPU_LAYERS` | Number of layers to offload to the GPU. | | |
| | `--tensor_split TENSOR_SPLIT` | Split the model across multiple GPUs. Comma-separated list of proportions. Example: 18,17. | | |
| | `--llama_cpp_seed SEED` | Seed for llama-cpp models. Default is 0 (random). | | |
| | `--numa` | Activate NUMA task allocation for llama.cpp. | | |
| | `--logits_all`| Needs to be set for perplexity evaluation to work. Otherwise, ignore it, as it makes prompt processing slower. | | |
| | `--cache-capacity CACHE_CAPACITY` | Maximum cache capacity (llama-cpp-python). Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed. | | |
| #### ExLlama | |
| | Flag | Description | | |
| |------------------|-------------| | |
| |`--gpu-split` | Comma-separated list of VRAM (in GB) to use per GPU device for model layers. Example: 20,7,7. | | |
| |`--max_seq_len MAX_SEQ_LEN` | Maximum sequence length. | | |
| |`--cfg-cache` | ExLlama_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader, but not necessary for CFG with base ExLlama. | | |
| |`--no_flash_attn` | Force flash-attention to not be used. | | |
| |`--cache_8bit` | Use 8-bit cache to save VRAM. | | |
| #### AutoGPTQ | |
| | Flag | Description | | |
| |------------------|-------------| | |
| | `--triton` | Use triton. | | |
| | `--no_inject_fused_attention` | Disable the use of fused attention, which will use less VRAM at the cost of slower inference. | | |
| | `--no_inject_fused_mlp` | Triton mode only: disable the use of fused MLP, which will use less VRAM at the cost of slower inference. | | |
| | `--no_use_cuda_fp16` | This can make models faster on some systems. | | |
| | `--desc_act` | For models that don't have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig. | | |
| | `--disable_exllama` | Disable ExLlama kernel, which can improve inference speed on some systems. | | |
| #### GPTQ-for-LLaMa | |
| | Flag | Description | | |
| |---------------------------|-------------| | |
| | `--wbits WBITS` | Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported. | | |
| | `--model_type MODEL_TYPE` | Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported. | | |
| | `--groupsize GROUPSIZE` | Group size. | | |
| | `--pre_layer PRE_LAYER [PRE_LAYER ...]` | The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. For multi-gpu, write the numbers separated by spaces, eg `--pre_layer 30 60`. | | |
| | `--checkpoint CHECKPOINT` | The path to the quantized checkpoint file. If not specified, it will be automatically detected. | | |
| | `--monkey-patch` | Apply the monkey patch for using LoRAs with quantized models. | | |
| #### ctransformers | |
| | Flag | Description | | |
| |-------------|-------------| | |
| | `--model_type MODEL_TYPE` | Model type of pre-quantized model. Currently gpt2, gptj, gptneox, falcon, llama, mpt, starcoder (gptbigcode), dollyv2, and replit are supported. | | |
| #### DeepSpeed | |
| | Flag | Description | | |
| |---------------------------------------|-------------| | |
| | `--deepspeed` | Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration. | | |
| | `--nvme-offload-dir NVME_OFFLOAD_DIR` | DeepSpeed: Directory to use for ZeRO-3 NVME offloading. | | |
| | `--local_rank LOCAL_RANK` | DeepSpeed: Optional argument for distributed setups. | | |
| #### RWKV | |
| | Flag | Description | | |
| |---------------------------------|-------------| | |
| | `--rwkv-strategy RWKV_STRATEGY` | RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8". | | |
| | `--rwkv-cuda-on` | RWKV: Compile the CUDA kernel for better performance. | | |
| #### RoPE (for llama.cpp, ExLlama, ExLlamaV2, and transformers) | |
| | Flag | Description | | |
| |------------------|-------------| | |
| | `--alpha_value ALPHA_VALUE` | Positional embeddings alpha factor for NTK RoPE scaling. Use either this or `compress_pos_emb`, not both. | | |
| | `--rope_freq_base ROPE_FREQ_BASE` | If greater than 0, will be used instead of alpha_value. Those two are related by `rope_freq_base = 10000 * alpha_value ^ (64 / 63)`. | | |
| | `--compress_pos_emb COMPRESS_POS_EMB` | Positional embeddings compression factor. Should be set to `(context length) / (model's original context length)`. Equal to `1/rope_freq_scale`. | | |
| #### Gradio | |
| | Flag | Description | | |
| |---------------------------------------|-------------| | |
| | `--listen` | Make the web UI reachable from your local network. | | |
| | `--listen-port LISTEN_PORT` | The listening port that the server will use. | | |
| | `--listen-host LISTEN_HOST` | The hostname that the server will use. | | |
| | `--share` | Create a public URL. This is useful for running the web UI on Google Colab or similar. | | |
| | `--auto-launch` | Open the web UI in the default browser upon launch. | | |
| | `--gradio-auth USER:PWD` | Set Gradio authentication password in the format "username:password". Multiple credentials can also be supplied with "u1:p1,u2:p2,u3:p3". | | |
| | `--gradio-auth-path GRADIO_AUTH_PATH` | Set the Gradio authentication file path. The file should contain one or more user:password pairs in the same format as above. | | |
| | `--ssl-keyfile SSL_KEYFILE` | The path to the SSL certificate key file. | | |
| | `--ssl-certfile SSL_CERTFILE` | The path to the SSL certificate cert file. | | |
| #### API | |
| | Flag | Description | | |
| |---------------------------------------|-------------| | |
| | `--api` | Enable the API extension. | | |
| | `--public-api` | Create a public URL for the API using Cloudfare. | | |
| | `--public-api-id PUBLIC_API_ID` | Tunnel ID for named Cloudflare Tunnel. Use together with public-api option. | | |
| | `--api-port API_PORT` | The listening port for the API. | | |
| | `--api-key API_KEY` | API authentication key. | | |
| #### Multimodal | |
| | Flag | Description | | |
| |---------------------------------------|-------------| | |
| | `--multimodal-pipeline PIPELINE` | The multimodal pipeline to use. Examples: `llava-7b`, `llava-13b`. | | |
| ## Google Colab notebook | |
| https://colab.research.google.com/github/oobabooga/text-generation-webui/blob/main/Colab-TextGen-GPU.ipynb | |
| ## Contributing | |
| If you would like to contribute to the project, check out the [Contributing guidelines](https://github.com/oobabooga/text-generation-webui/wiki/Contributing-guidelines). | |
| ## Community | |
| * Subreddit: https://www.reddit.com/r/oobabooga/ | |
| * Discord: https://discord.gg/jwZCF2dPQN | |
| ## Acknowledgment | |
| In August 2023, [Andreessen Horowitz](https://a16z.com/) (a16z) provided a generous grant to encourage and support my independent work on this project. I am **extremely** grateful for their trust and recognition, which will allow me to dedicate more time towards realizing the full potential of text-generation-webui. | |