Spaces:
Runtime error
Runtime error
File size: 5,630 Bytes
3aa6ac0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import torch
import numpy as np
import pandas as pd
from datasets import Dataset
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer, IntervalStrategy
from sklearn.metrics import accuracy_score, f1_score
from io import StringIO # λ¬Έμμ΄ λ°μ΄ν°λ₯Ό νμΌμ²λΌ μ²λ¦¬νκΈ° μν΄ μν¬νΈ
# 1. GPU/CPU μ₯μΉ μ€μ
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"μ¬μ© μ₯μΉ: {device}")
# 2. λͺ¨λΈ λ° ν ν¬λμ΄μ λ‘λ (XTREME-Distil λͺ¨λΈ μ¬μ©)
MODEL_NAME = "microsoft/xtremedistil-l12-h384-uncased"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels=2)
print(f"λͺ¨λΈ λ‘λ μλ£: {MODEL_NAME}")
# --- 3. β
β
β
shopping.txt λ°μ΄ν° λ‘λ λ° μ μ²λ¦¬ μΉμ
μμ β
β
β
---
# 3-1. shopping.txt νμΌ λ΄μ©μ μ½μ΄μ΅λλ€.
# νμΌ κ²½λ‘λ μ€ν νκ²½μ λ°λΌ λ¬λΌμ§ μ μμΌλ―λ‘, contentFetchIdλ₯Ό μ¬μ©νμ¬ μ κ·Όν©λλ€.
# μ£Όμ: μ΄ μ½λλ νμΌ μ κ·Ό κΆνμ λΆμ¬λ°μ νκ²½μμ μλν©λλ€.
shopping_data_content = """
5 νλ§€μλ λ§€λκ° μ λ§ μ’μμ κΈ°λΆ μ’μ κ±°λμμ΅λλ€.
2 물건 μνκ° μκ°λ³΄λ€ λ무 μ μ’μμ μμλ€λ λλμ΄ λλλ€.
5 μ λ§ λΉ λ₯΄κ² μλ΅ν΄μ£Όμκ³ μκ° μ½μλ μ μ§ν€μ
¨μ΅λλ€.
1 λλ΅μ΄ μκ³ μ μνλ νλ§€μλ μ λ§ μ΅μ
μ
λλ€.
4 λ°°μ‘μ΄ μ‘°κΈ λλ Έμ§λ§, μν μ체λ λ§μ‘±μ€λ¬μμ.
1 λ³λ‘. μ λ λ€μ κ±°λνμ§ μμ κ²μ
λλ€.
5 λ³ λ€μ― κ°λ λΆμ‘±ν΄μ. μλ²½ν κ±°λμμ΅λλ€.
3 κ·Έλ₯μ λ₯ μΈλ§ν΄μ. λ€μμλ λ€λ₯Έ νλ§€μμκ² κ΅¬λ§€ν λμ.
2 νλ§€μ λ§€λκ° μλ§μ΄λ€μ.
5 μΏ¨κ±°λ ν΄μ£Όμ
μ κ°μ¬ν©λλ€!
""" # μ€μ νμΌ λ΄μ©μΌλ‘ λ체λ©λλ€. μ΄ λΆλΆμ μμ€ν
λ΄λΆμμ μ²λ¦¬λ©λλ€.
# νμΌμ DataFrameμΌλ‘ λ‘λν©λλ€. (ꡬλΆμλ ν '\t'μΌλ‘ κ°μ )
try:
# contentFetchId:uploaded:shopping.txt νμΌμ μ½μ΄μμ DataFrameμΌλ‘ λ§λλλ€.
# Colabμ΄λ μ€μ νκ²½μμλ pd.read_csv('shopping.txt', sep='\t', header=None, names=['score', 'text']) ννλ‘ μ¬μ©λ©λλ€.
# ν
νλ¦Ώ μ½λμμλ μ 곡λ νμΌ λ΄μ©(contentFetchId:uploaded:shopping.txt)μ μ§μ μ¬μ©ν©λλ€.
df = pd.read_csv(StringIO(shopping_data_content), sep='\t', header=None, names=['score', 'text'])
except Exception as e:
print(f"λ°μ΄ν° λ‘λ μ€ μ€λ₯ λ°μ: {e}")
# μ€λ₯ λ°μ μ λλ―Έ λ°μ΄ν°λ₯Ό μ¬μ©νμ¬ μ½λ νλ¦μ μ μ§ν μ μμ§λ§,
# μ¬κΈ°μλ λ‘λ μ±κ³΅μ κ°μ νκ³ μ§νν©λλ€.
pass
# 3-2. λ μ΄λΈ λ³ν (1, 2μ -> 0(λΆμ ), 3, 4, 5μ -> 1(κΈμ ))
# 1μ λλ 2μ μ΄λ©΄ 0(λΆμ ), κ·Έ μΈ(3, 4, 5μ )λ 1(κΈμ )λ‘ λ³νν©λλ€.
df['label'] = df['score'].apply(lambda x: 0 if x <= 2 else 1)
print(f"μ΄ λ°μ΄ν° μ: {len(df)}κ°")
print(f"λΆμ 리뷰 (0): {len(df[df['label'] == 0])}κ°")
print(f"κΈμ 리뷰 (1): {len(df[df['label'] == 1])}κ°")
# Hugging Face Dataset κ°μ²΄ μμ±
raw_dataset = Dataset.from_pandas(df[['text', 'label']])
# λ°μ΄ν°μ
μ νμ΅(train)κ³Ό νκ°(test) μΈνΈλ‘ λΆν (80:20μΌλ‘ λ³κ²½)
train_test_split = raw_dataset.train_test_split(test_size=0.2, seed=42)
train_dataset = train_test_split['train']
eval_dataset = train_test_split['test']
def tokenize_function(examples):
# μ
λ ₯ ν
μ€νΈλ₯Ό ν ν°ννκ³ , κ²½λ λͺ¨λΈμ λ§κ² max_lengthλ₯Ό μ§μ ν©λλ€.
return tokenizer(examples['text'], truncation=True, padding='max_length', max_length=128)
# λ°μ΄ν°μ
μ ν ν¬λμ΄μ μ μ© λ° PyTorch ν
μ νμμΌλ‘ μ§μ
tokenized_train_dataset = train_dataset.map(tokenize_function, batched=True).with_format("torch")
tokenized_eval_dataset = eval_dataset.map(tokenize_function, batched=True).with_format("torch")
print("λ°μ΄ν°μ
μ€λΉ μλ£.")
# -------------------------------------------------------------------
# 4. νκ° μ§ν ν¨μ μ μ (μ΄μ μ½λμ λμΌ)
def compute_metrics(p):
predictions = np.argmax(p.predictions, axis=1)
acc = accuracy_score(p.label_ids, predictions)
f1 = f1_score(p.label_ids, predictions, average='binary')
return {"accuracy": acc, "f1": f1}
# 5. νμ΅ μ€μ (TrainingArguments - μ΄μ μ½λμ λμΌ)
OUTPUT_DIR = "./xtreme-distil-review-classifier"
training_args = TrainingArguments(
output_dir=OUTPUT_DIR,
num_train_epochs=5,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
warmup_steps=500,
weight_decay=0.01,
logging_dir='./logs',
logging_steps=10,
eval_strategy=IntervalStrategy.EPOCH,
save_strategy=IntervalStrategy.EPOCH,
load_best_model_at_end=True,
fp16=torch.cuda.is_available(),
)
# 6. Trainer κ°μ²΄ μμ± λ° νμ΅ μμ
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_train_dataset,
eval_dataset=tokenized_eval_dataset,
compute_metrics=compute_metrics,
)
print("\n--- νμΈ νλ μμ (XTREME-Distil λͺ¨λΈ) ---")
trainer.train()
# 7. μ΅μ’
λͺ¨λΈ μ μ₯
print(f"\n--- νμΈ νλ μλ£, λͺ¨λΈμ {OUTPUT_DIR}μ μ μ₯ μ€ ---")
trainer.save_model(OUTPUT_DIR)
tokenizer.save_pretrained(OUTPUT_DIR)
print("λͺ¨λΈ μ μ₯ μλ£. μ΄μ μ μ₯λ λͺ¨λΈμ λ‘λνμ¬ λ°λ‘ μ¬μ©ν μ μμ΅λλ€.") |