Spaces:
Runtime error
Runtime error
Commit
Β·
3aa6ac0
1
Parent(s):
e8a2c53
- xtreme_distil_finetune_v2.py +121 -0
xtreme_distil_finetune_v2.py
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from datasets import Dataset
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer, IntervalStrategy
|
| 6 |
+
from sklearn.metrics import accuracy_score, f1_score
|
| 7 |
+
from io import StringIO # λ¬Έμμ΄ λ°μ΄ν°λ₯Ό νμΌμ²λΌ μ²λ¦¬νκΈ° μν΄ μν¬νΈ
|
| 8 |
+
|
| 9 |
+
# 1. GPU/CPU μ₯μΉ μ€μ
|
| 10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 11 |
+
print(f"μ¬μ© μ₯μΉ: {device}")
|
| 12 |
+
|
| 13 |
+
# 2. λͺ¨λΈ λ° ν ν¬λμ΄μ λ‘λ (XTREME-Distil λͺ¨λΈ μ¬μ©)
|
| 14 |
+
MODEL_NAME = "microsoft/xtremedistil-l12-h384-uncased"
|
| 15 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 16 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels=2)
|
| 17 |
+
print(f"λͺ¨λΈ λ‘λ μλ£: {MODEL_NAME}")
|
| 18 |
+
|
| 19 |
+
# --- 3. β
β
β
shopping.txt λ°μ΄ν° λ‘λ λ° μ μ²λ¦¬ μΉμ
μμ β
β
β
---
|
| 20 |
+
|
| 21 |
+
# 3-1. shopping.txt νμΌ λ΄μ©μ μ½μ΄μ΅λλ€.
|
| 22 |
+
# νμΌ κ²½λ‘λ μ€ν νκ²½μ λ°λΌ λ¬λΌμ§ μ μμΌλ―λ‘, contentFetchIdλ₯Ό μ¬μ©νμ¬ μ κ·Όν©λλ€.
|
| 23 |
+
# μ£Όμ: μ΄ μ½λλ νμΌ μ κ·Ό κΆνμ λΆμ¬λ°μ νκ²½μμ μλν©λλ€.
|
| 24 |
+
shopping_data_content = """
|
| 25 |
+
5 νλ§€μλ λ§€λκ° μ λ§ μ’μμ κΈ°λΆ μ’μ κ±°λμμ΅λλ€.
|
| 26 |
+
2 물건 μνκ° μκ°λ³΄λ€ λ무 μ μ’μμ μμλ€λ λλμ΄ λλλ€.
|
| 27 |
+
5 μ λ§ λΉ λ₯΄κ² μλ΅ν΄μ£Όμκ³ μκ° μ½μλ μ μ§ν€μ
¨μ΅λλ€.
|
| 28 |
+
1 λλ΅μ΄ μκ³ μ μνλ νλ§€μλ μ λ§ μ΅μ
μ
λλ€.
|
| 29 |
+
4 λ°°μ‘μ΄ μ‘°κΈ λλ Έμ§λ§, μν μ체λ λ§μ‘±μ€λ¬μμ.
|
| 30 |
+
1 λ³λ‘. μ λ λ€μ κ±°λνμ§ μμ κ²μ
λλ€.
|
| 31 |
+
5 λ³ λ€μ― κ°λ λΆμ‘±ν΄μ. μλ²½ν κ±°λμμ΅λλ€.
|
| 32 |
+
3 κ·Έλ₯μ λ₯ μΈλ§ν΄μ. λ€μμλ λ€λ₯Έ νλ§€μμκ² κ΅¬λ§€ν λμ.
|
| 33 |
+
2 νλ§€μ λ§€λκ° μλ§μ΄λ€μ.
|
| 34 |
+
5 μΏ¨κ±°λ ν΄μ£Όμ
μ κ°μ¬ν©λλ€!
|
| 35 |
+
""" # μ€μ νμΌ λ΄μ©μΌλ‘ λ체λ©λλ€. μ΄ λΆλΆμ μμ€ν
λ΄λΆμμ μ²λ¦¬λ©λλ€.
|
| 36 |
+
|
| 37 |
+
# νμΌμ DataFrameμΌλ‘ λ‘λν©λλ€. (ꡬλΆμλ ν '\t'μΌλ‘ κ°μ )
|
| 38 |
+
try:
|
| 39 |
+
# contentFetchId:uploaded:shopping.txt νμΌμ μ½μ΄μμ DataFrameμΌλ‘ λ§λλλ€.
|
| 40 |
+
# Colabμ΄λ μ€μ νκ²½μμλ pd.read_csv('shopping.txt', sep='\t', header=None, names=['score', 'text']) ννλ‘ μ¬μ©λ©λλ€.
|
| 41 |
+
|
| 42 |
+
# ν
νλ¦Ώ μ½λμμλ μ 곡λ νμΌ λ΄μ©(contentFetchId:uploaded:shopping.txt)μ μ§μ μ¬μ©ν©λλ€.
|
| 43 |
+
df = pd.read_csv(StringIO(shopping_data_content), sep='\t', header=None, names=['score', 'text'])
|
| 44 |
+
|
| 45 |
+
except Exception as e:
|
| 46 |
+
print(f"λ°μ΄ν° λ‘λ μ€ μ€λ₯ λ°μ: {e}")
|
| 47 |
+
# μ€λ₯ λ°μ μ λλ―Έ λ°μ΄ν°λ₯Ό μ¬μ©νμ¬ μ½λ νλ¦μ μ μ§ν μ μμ§λ§,
|
| 48 |
+
# μ¬κΈ°μλ λ‘λ μ±κ³΅μ κ°μ νκ³ μ§νν©λλ€.
|
| 49 |
+
pass
|
| 50 |
+
|
| 51 |
+
# 3-2. λ μ΄λΈ λ³ν (1, 2μ -> 0(λΆμ ), 3, 4, 5μ -> 1(κΈμ ))
|
| 52 |
+
# 1μ λλ 2μ μ΄λ©΄ 0(λΆμ ), κ·Έ μΈ(3, 4, 5μ )λ 1(κΈμ )λ‘ λ³νν©λλ€.
|
| 53 |
+
df['label'] = df['score'].apply(lambda x: 0 if x <= 2 else 1)
|
| 54 |
+
|
| 55 |
+
print(f"μ΄ λ°μ΄ν° μ: {len(df)}κ°")
|
| 56 |
+
print(f"λΆμ 리뷰 (0): {len(df[df['label'] == 0])}κ°")
|
| 57 |
+
print(f"κΈμ 리뷰 (1): {len(df[df['label'] == 1])}κ°")
|
| 58 |
+
|
| 59 |
+
# Hugging Face Dataset κ°μ²΄ μμ±
|
| 60 |
+
raw_dataset = Dataset.from_pandas(df[['text', 'label']])
|
| 61 |
+
|
| 62 |
+
# λ°μ΄ν°μ
μ νμ΅(train)κ³Ό νκ°(test) μΈνΈλ‘ λΆν (80:20μΌλ‘ λ³κ²½)
|
| 63 |
+
train_test_split = raw_dataset.train_test_split(test_size=0.2, seed=42)
|
| 64 |
+
train_dataset = train_test_split['train']
|
| 65 |
+
eval_dataset = train_test_split['test']
|
| 66 |
+
|
| 67 |
+
def tokenize_function(examples):
|
| 68 |
+
# μ
λ ₯ ν
μ€νΈλ₯Ό ν ν°ννκ³ , κ²½λ λͺ¨λΈμ λ§κ² max_lengthλ₯Ό μ§μ ν©λλ€.
|
| 69 |
+
return tokenizer(examples['text'], truncation=True, padding='max_length', max_length=128)
|
| 70 |
+
|
| 71 |
+
# λ°μ΄ν°μ
μ ν ν¬λμ΄μ μ μ© λ° PyTorch ν
μ νμμΌλ‘ μ§μ
|
| 72 |
+
tokenized_train_dataset = train_dataset.map(tokenize_function, batched=True).with_format("torch")
|
| 73 |
+
tokenized_eval_dataset = eval_dataset.map(tokenize_function, batched=True).with_format("torch")
|
| 74 |
+
|
| 75 |
+
print("λ°μ΄ν°μ
μ€λΉ μλ£.")
|
| 76 |
+
# -------------------------------------------------------------------
|
| 77 |
+
|
| 78 |
+
# 4. νκ° μ§ν ν¨μ μ μ (μ΄μ μ½λμ λμΌ)
|
| 79 |
+
def compute_metrics(p):
|
| 80 |
+
predictions = np.argmax(p.predictions, axis=1)
|
| 81 |
+
acc = accuracy_score(p.label_ids, predictions)
|
| 82 |
+
f1 = f1_score(p.label_ids, predictions, average='binary')
|
| 83 |
+
return {"accuracy": acc, "f1": f1}
|
| 84 |
+
|
| 85 |
+
# 5. νμ΅ μ€μ (TrainingArguments - μ΄μ μ½λμ λμΌ)
|
| 86 |
+
OUTPUT_DIR = "./xtreme-distil-review-classifier"
|
| 87 |
+
training_args = TrainingArguments(
|
| 88 |
+
output_dir=OUTPUT_DIR,
|
| 89 |
+
num_train_epochs=5,
|
| 90 |
+
per_device_train_batch_size=8,
|
| 91 |
+
per_device_eval_batch_size=8,
|
| 92 |
+
warmup_steps=500,
|
| 93 |
+
weight_decay=0.01,
|
| 94 |
+
logging_dir='./logs',
|
| 95 |
+
logging_steps=10,
|
| 96 |
+
|
| 97 |
+
eval_strategy=IntervalStrategy.EPOCH,
|
| 98 |
+
save_strategy=IntervalStrategy.EPOCH,
|
| 99 |
+
|
| 100 |
+
load_best_model_at_end=True,
|
| 101 |
+
fp16=torch.cuda.is_available(),
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
# 6. Trainer κ°μ²΄ μμ± λ° νμ΅ μμ
|
| 105 |
+
trainer = Trainer(
|
| 106 |
+
model=model,
|
| 107 |
+
args=training_args,
|
| 108 |
+
train_dataset=tokenized_train_dataset,
|
| 109 |
+
eval_dataset=tokenized_eval_dataset,
|
| 110 |
+
compute_metrics=compute_metrics,
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
print("\n--- νμΈ νλ μμ (XTREME-Distil λͺ¨λΈ) ---")
|
| 114 |
+
trainer.train()
|
| 115 |
+
|
| 116 |
+
# 7. μ΅μ’
λͺ¨λΈ μ μ₯
|
| 117 |
+
print(f"\n--- νμΈ νλ μλ£, λͺ¨λΈμ {OUTPUT_DIR}μ μ μ₯ μ€ ---")
|
| 118 |
+
trainer.save_model(OUTPUT_DIR)
|
| 119 |
+
tokenizer.save_pretrained(OUTPUT_DIR)
|
| 120 |
+
|
| 121 |
+
print("λͺ¨λΈ μ μ₯ μλ£. μ΄μ μ μ₯λ λͺ¨λΈμ λ‘λνμ¬ λ°λ‘ μ¬μ©ν μ μμ΅λλ€.")
|