Spaces:
Runtime error
Runtime error
File size: 2,209 Bytes
e8a2c53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# 1. ๋ชจ๋ธ์ด ์ ์ฅ๋ ํด๋ ๊ฒฝ๋ก ์ง์
LOAD_MODEL_PATH = "./xtreme-distil-review-classifier"
# 2. GPU/CPU ์ฅ์น ์ค์
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"์ฌ์ฉ ์ฅ์น: {device}")
# 3. ์ ์ฅ๋ ํ ํฌ๋์ด์ ์ ๋ชจ๋ธ ๋ก๋
# ์ ์ฅ๋ config.json๊ณผ model.safetensors ํ์ผ์ ๋ฐํ์ผ๋ก ๋ก๋ํฉ๋๋ค.
print(f"\n--- ๋ชจ๋ธ ๋ก๋ ์ค: {LOAD_MODEL_PATH} ---")
loaded_tokenizer = AutoTokenizer.from_pretrained(LOAD_MODEL_PATH)
loaded_model = AutoModelForSequenceClassification.from_pretrained(LOAD_MODEL_PATH)
# ๋ชจ๋ธ์ ์ค์ ๋ ์ฅ์น(GPU ๋๋ CPU)๋ก ์ด๋
loaded_model.to(device)
loaded_model.eval() # ๋ชจ๋ธ์ ํ๊ฐ ๋ชจ๋๋ก ์ค์ (ํ์)
# 4. ๋ถ๋ฅ ํจ์ ์ ์
def classify_review(text):
# ํ
์คํธ๋ฅผ ํ ํฐํํ๊ณ ์ฅ์น๋ก ์ด๋
inputs = loaded_tokenizer(
text,
return_tensors="pt", # PyTorch ํ
์๋ก ๋ฐํ
padding=True,
truncation=True
).to(device)
# ๋ชจ๋ธ ์ถ๋ก (Inference)
with torch.no_grad():
outputs = loaded_model(**inputs)
# ๊ฒฐ๊ณผ ์ฒ๋ฆฌ
probabilities = torch.softmax(outputs.logits, dim=1)
predicted_class_id = probabilities.argmax().item()
# ๋ ์ด๋ธ ๋งคํ (ํ์ธ ํ๋ ์ ์ค์ ํ 0: ๋ถ์ , 1: ๊ธ์ ๊ธฐ์ค)
label_map = {0: "๋ถ์ (Negative)", 1: "๊ธ์ (Positive)"}
predicted_label = label_map[predicted_class_id]
confidence = probabilities[0][predicted_class_id].item()
return predicted_label, confidence
# 5. ์๋ก์ด ๋น๊ทผ๋ง์ผ ๋ฆฌ๋ทฐ ํ
์คํธ ์คํ
new_reviews = [
"๋งค๋๊ฐ ์ ๋ง ์ข์ผ์ธ์! ๊ธฐ๋ถ ์ข์ ๊ฑฐ๋๋ค์",
"๋ฌผ๊ฑด ์ํ๊ฐ ์๊ฐ๋ณด๋ค ๋๋ฌด ์ ์ข์์ ์์๋ค๋ ๋๋์ด ๋ญ๋๋ค.",
"๋น ๋ฅธ ๊ฑฐ๋ ๊ฐ์ฌํฉ๋๋ค. ๋ฌธ์ ์์ด ์ ๋ฐ์์ด์.",
"์ฐ๋ฝ์ ์๋ฐ๋ค์",
]
print("\n--- ์๋ก์ด ๋ฆฌ๋ทฐ ๋ถ๋ฅ ๊ฒฐ๊ณผ ---")
for review in new_reviews:
label, confidence = classify_review(review)
print(f"๋ฆฌ๋ทฐ: '{review}'")
print(f" -> ์์ธก ๋ถ๋ฅ: **{label}** (ํ๋ฅ : {confidence:.4f})")
print("-" * 35) |