Spaces:
Sleeping
Sleeping
File size: 7,906 Bytes
3b70c60 c41577c 3b70c60 c41577c 3b70c60 c41577c c156c1f 3b70c60 c41577c 3b70c60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import gradio as gr
import spaces # HF Spaces ZeroGPU decorator - only available in HF Spaces environment
import torch
import torch.nn.functional as F
import os
import sys
from huggingface_hub import login
from config import ModelArgs, get_args
from model import DeepSeekV3, initialize_tokenizer
from tokenizer import Tokenizer
from inference import topk_sampling
# Global variables
tk = None
model = None
model_args = None
# Model paths - using the checkpoint in the HF Space
model_paths = {
"Checkpoint 2000": "./checkpoint_2000.pt",
}
def initialize_app():
"""Initialize the app with tokenizer and model args"""
global tk, model_args
# Initialize model args
model_args = ModelArgs()
# Get HF token from environment variables (set in HF Spaces secrets)
hf_token = os.getenv('HF_TOKEN') or os.getenv('HUGGINGFACE_HUB_TOKEN')
if not hf_token:
print("Warning: No HF_TOKEN found in environment variables.")
print("Please set HF_TOKEN in your Hugging Face Spaces secrets.")
print("Go to Settings -> Repository secrets -> New secret")
print("Name: HF_TOKEN, Value: your_huggingface_token")
# For now, we'll try to continue without authentication
hf_token = None
# Login to Hugging Face Hub for gated model access
if hf_token:
try:
login(token=hf_token, add_to_git_credential=False)
print("Successfully logged in to Hugging Face Hub")
except Exception as e:
print(f"Warning: Could not login to HF Hub: {e}")
# Initialize tokenizer with HF token for gated model access
if tk is None:
try:
tk = Tokenizer(hf_token=hf_token)
tk = tk.ready_tokenizer()
print("Tokenizer initialized successfully")
except Exception as e:
print(f"Error initializing tokenizer: {e}")
print("This might be due to missing HF_TOKEN or lack of access to gated models.")
print("The app will try to use a fallback tokenizer.")
# Don't raise the error, let the tokenizer handle fallback
try:
tk = Tokenizer(hf_token=None) # Force fallback
tk = tk.ready_tokenizer()
print("Fallback tokenizer initialized successfully")
except Exception as fallback_error:
print(f"Fallback tokenizer also failed: {fallback_error}")
raise fallback_error
# Initialize the global tokenizer in model.py
initialize_tokenizer(hf_token=hf_token)
def load_model(model_path, device, model_args):
"""Load model from checkpoint"""
model = DeepSeekV3(
embeddings_dims=model_args.embeddings_dims,
block_size=model_args.block_size,
vocab_size=model_args.vocab_size,
dropout=model_args.dropout,
device=device
)
if os.path.exists(model_path):
checkpoint = torch.load(model_path, map_location=device)
model.load_state_dict(checkpoint)
model.eval()
print(f"Model loaded from {model_path}")
else:
print(f"Checkpoint {model_path} not found. Using randomly initialized model.")
return model
@spaces.GPU(duration=120)
def generate_text(prompt, model_choice, max_length, temperature, top_k):
"""Generate text using the selected model and top-k sampling"""
global tk, model_args
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
# Load the selected model
model_path = model_paths.get(model_choice, "./checkpoint_2000.pt")
model = load_model(model_path, device, model_args)
model = model.to(device)
try:
generated_text = topk_sampling(
model=model,
prompt=prompt,
device=device,
max_length=max_length,
top_k=top_k,
temperature=temperature,
tokenizer=tk
)
return generated_text
except Exception as e:
return f"Error generating text: {str(e)}"
def create_interface():
"""Create the Gradio interface"""
global tk, model_args
# Initialize the app
initialize_app()
with gr.Blocks(title="StoryKimi Text Generator", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π StoryKimi Text Generator")
gr.Markdown("Generate text using the Kimi K2 inspired StoryKimi model with ZeroGPU support.")
gr.Markdown("β‘ **Powered by ZeroGPU** - Dynamic GPU allocation for efficient inference")
with gr.Row():
with gr.Column(scale=2):
prompt_input = gr.Textbox(
label="Input Prompt",
placeholder="Enter your prompt here...",
lines=3,
value="Once upon a time there lived a baby deer named Bambi."
)
with gr.Row():
model_dropdown = gr.Dropdown(
choices=list(model_paths.keys()),
label="Model Checkpoint",
value="Checkpoint 2000"
)
with gr.Row():
max_length_slider = gr.Slider(
minimum=10,
maximum=128,
value=50,
step=10,
label="Max Length"
)
temperature_slider = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.9,
step=0.1,
label="Temperature"
)
with gr.Row():
top_k_slider = gr.Slider(
minimum=1,
maximum=100,
value=50,
step=1,
label="Top-k"
)
generate_btn = gr.Button("π― Generate Text", variant="primary", size="lg")
with gr.Column(scale=3):
output_text = gr.Textbox(
label="Generated Text",
lines=15,
interactive=False
)
with gr.Row():
clear_btn = gr.Button("ποΈ Clear", variant="secondary")
# Event handlers
generate_btn.click(
fn=generate_text,
inputs=[
prompt_input,
model_dropdown,
max_length_slider,
temperature_slider,
top_k_slider
],
outputs=output_text
)
clear_btn.click(
fn=lambda: ("", ""),
outputs=[prompt_input, output_text]
)
# Model information
gr.Markdown("## βΉοΈ Model Information")
gr.Markdown("""
- **Model Architecture**: Kimi K2 inspired (StoryKimi)
- **ZeroGPU**: Dynamic GPU allocation with H200 slice (70GB VRAM)
- **GPU Duration**: 120 seconds maximum per generation
- **Deployment**: Hugging Face Spaces with automatic scaling
""")
gr.Markdown("## π Features")
gr.Markdown("""
- **Top-k Sampling**: Control randomness with top-k token selection
- **Temperature Control**: Adjust creativity vs coherence
- **Variable Length**: Generate 10-128 tokens
- **Real-time Generation**: Powered by ZeroGPU infrastructure
""")
return demo
if __name__ == "__main__":
# Create and launch the interface
demo = create_interface()
demo.launch()
|