File size: 24,750 Bytes
3b70c60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from torch.nn import RMSNorm
from config import ModelArgs
from tokenizer import Tokenizer

# Initialize tokenizer globally as None - will be set later
tokenizer = None
model_args = ModelArgs()


def initialize_tokenizer(hf_token=None):
    """Initialize the global tokenizer with the provided HF token"""
    global tokenizer
    if tokenizer is None:
        tokenizer_instance = Tokenizer(hf_token=hf_token)
        tokenizer = tokenizer_instance.ready_tokenizer()
    return tokenizer

class Normalization(nn.Module):
    def __init__(
        self,
        embeddings_dims: int = model_args.embeddings_dims
    ):  
        super().__init__()
        self.rmsnorm_layer = RMSNorm(embeddings_dims)
        
        
    def forward(self, x):
        
        x = self.rmsnorm_layer(x)
        return x
        


class Swish(nn.Module):
    def __init__(
        self,
        block_size: int = model_args.block_size,
        embeddings_dims: int = model_args.embeddings_dims,
        device = model_args.device
    ):
        super().__init__()

        self.sig = torch.nn.Sigmoid()


    def forward(self, x):
        swish = x * self.sig(x)

        return swish



class SWiGLUExpertMoE(nn.Module):
    def __init__(
        self,
        block_size: int = model_args.block_size,
        embeddings_dims: int = model_args.embeddings_dims,
        device = model_args.device
    ):
        super().__init__()

        self.hidden_dims = (embeddings_dims * 2)
        self.swish = Swish(block_size=block_size, embeddings_dims=embeddings_dims, device=device)
        self.linear_layer1 = nn.Linear(in_features=embeddings_dims, out_features=self.hidden_dims,  bias=False, device = device)
        self.linear_layer2 = nn.Linear(in_features=embeddings_dims, out_features=self.hidden_dims,  bias=False, device = device)
        self.linear_layer3 = nn.Linear(in_features=self.hidden_dims, out_features=embeddings_dims,  bias=False, device = device)




    def forward(self, x):
        swish_res = self.swish(self.linear_layer1(x))
        x_V = self.linear_layer2(x)
        res = torch.mul(swish_res, x_V)
        out = self.linear_layer3(res)
        return out



class MoeLayer(nn.Module):
    def __init__(
        self,
        dropout = model_args.dropout,
        embeddings_size = model_args.embeddings_dims,
        device = model_args.device,
        # inner_dimensional_states: int = 3072
    ):
        super().__init__()

        self.heads = nn.ModuleList([SWiGLUExpertMoE() for _ in range(model_args.experts)])
        self.gate = nn.Linear(in_features=embeddings_size, out_features=model_args.experts, device=device, bias=False)
        
        # Only create shared expert if enabled
        if model_args.use_shared_expert:
            self.shared_expert = SWiGLUExpertMoE()
        else:
            self.shared_expert = None
            
        if(model_args.noisy_topk is True and model_args.use_checkpointing == False):
            self.noise = nn.Linear(in_features=embeddings_size, out_features=model_args.experts, device=device, bias=False)
            self.noisy_router = None
        # self.outputs = torch.zeros((batch_size,block_size, embeddings_size), device=device) #batch size needs to be defined because we are accessing it explicitly
        self.device = device
        # self.shared_expert_out = torch.zeros((model_args.batch_size, model_args.embeddings_dims), device=device)
        # self.b = torch.zeros((model_args.batch_size, model_args.block_size, model_args.experts), device=device)

        if model_args.useauxFreeLoadBalancingLoss:
            self.register_buffer('routing_bias', torch.zeros(model_args.experts, device=self.device))
            # self.routing_bias = torch.zeros(model_args.experts, device=self.device)
            self.bias_update_speed = model_args.aux_free_bias_update_rate
        
        
    def forward(self, x):
        # mlp_weights_init = self.mlp.apply(weights_init)
        self.gate_out = self.gate(x) #[bz, seq, num_experts]

        
        if(model_args.noisy_topk == True and model_args.use_checkpointing == False):
            noise = self.noise(x)
            gaussian_noise = torch.normal(0, 1, size=self.gate_out.shape, device=self.device)
            self.noisy_router = F.softplus(noise) * gaussian_noise
            self.gate_out += self.noisy_router
            
        

        shared_output = 0
        out = 0

        

        if model_args.useauxFreeLoadBalancingLoss:
            
           self.gate_out += self.routing_bias
           
        
                
        
        # Adjust top_k based on whether shared expert is used
        top_k = model_args.top_experts
        top_k_values, top_k_indices = torch.topk(self.gate_out, k=top_k) #[bs, seq len, top k]
        # topkmask = torch.ones_like(top_k_values, device=self.device)  # [bs, seq len, experts]
        # indices = torch.arange(top_k_values.size(0), device=self.device).unsqueeze(1).unsqueeze(2)  # [bs, 1, 1]
        # topkvaluesMasked = top_k_values.masked_fill(indices != top_k_indices, float('-inf'))  # Mask out negative values
        masked = torch.full_like(self.gate_out, float('-1e20'), device=self.device) 
        masked_values = masked.scatter_(-1, top_k_indices, top_k_values)
        probs = torch.nn.functional.softmax(masked_values, dim=-1) #[bs, seq len, top k]
        
        out = torch.zeros_like(x)
        if model_args.use_shared_expert and self.shared_expert is not None:
            shared_output += self.shared_expert(x)

        flat_x = x.view(-1, x.size(-1))  # Flatten the input for easier processing

        for i in range(model_args.experts): # Iterate through each expert index (0 to num_experts-1)
            # Determine which tokens routed to this expert 'i'
            # top_k_indices is [bs, seq_len, self.top_k]
            # We want a mask of shape [bs, seq_len] where True if expert 'i' is in the top_k for that token
            expert_i_is_chosen_mask = (top_k_indices == i).any(dim=-1) # Check along the top_k dimension
            # expert_i_is_chosen_mask has shape [bs, seq_len]

            if not expert_i_is_chosen_mask.any(): # If expert 'i' was not chosen by any token
                continue

            # Flatten the mask to apply to flat_x
            flat_expert_i_is_chosen_mask = expert_i_is_chosen_mask.reshape(-1) # Shape: [bs * seq_len]

            # Select input tokens for this expert
            selected_input_tokens = flat_x[flat_expert_i_is_chosen_mask] # Shape: [num_active_for_expert_i, embed_dim]

            if selected_input_tokens.numel() == 0: # Should be caught by .any() above, but good check
                continue

            # Process through the expert
            expert_output_for_selected = self.heads[i](selected_input_tokens)

            # Get the routing probabilities for these chosen tokens specifically for expert 'i'
            # routing_probs is [bs, seq_len, num_experts]
            # expert_i_probs_original_shape = routing_probs[:, :, i] # Probabilities for expert 'i', shape [bs, seq_len]
            # flat_expert_i_probs = expert_i_probs_original_shape.reshape(-1) # Shape [bs * seq_len]
            # active_token_weights = flat_expert_i_probs[flat_expert_i_is_chosen_mask] # Shape: [num_active_for_expert_i]

            # Alternative way to get weights directly using the mask on routing_probs for expert i:
            # Get the [bs, seq_len] slice of probabilities for the current expert 'i'
            probs_for_expert_i = probs[:, :, i] # Shape: [bs, seq_len]
            # Now use the expert_i_is_chosen_mask (which is also [bs, seq_len]) to select the relevant weights
            active_token_weights = probs_for_expert_i[expert_i_is_chosen_mask] # Shape: [num_active_for_expert_i]


            weighted_expert_output = expert_output_for_selected * active_token_weights.unsqueeze(-1)

            # Add this expert's contribution
            temp_contribution_for_expert_i = torch.zeros_like(x) # Initialize with zeros
            temp_contribution_for_expert_i.masked_scatter_(
                expert_i_is_chosen_mask.unsqueeze(-1).expand_as(x), # Use the original 2D mask, expanded
                weighted_expert_output
            )
            out = out + temp_contribution_for_expert_i
            
            
        # for expert_idx in range(model_args.experts):
        #     # Create mask for current expert across all top_k positions
        #     expert_mask = (top_k_indices == expert_idx)

        #     # Sum probabilities for current expert
        #     expert_weights = (probs * expert_mask).sum(dim=-1)  # [batch, seq_len]

        #     # Get inputs where expert is used
        #     selected = expert_weights > 0
        #     if not selected.any():
        #         continue
        #     # print(expert_weights.shape)
        #     # print(x[selected].shape)

        #     # Process all selected inputs through expert
        #     expert_out = self.heads[expert_idx](x[selected])
            
            
                
        #     # Weight and accumulate outputs
        #     out[selected] += expert_out * expert_weights[selected].unsqueeze(-1)

        out = out + shared_output  # Add shared expert output if enabled
        
        if model_args.useauxFreeLoadBalancingLoss and self.training:
            
            with torch.no_grad():  
                ci = probs.sum(dim=(0,1))  # Su  of tokens for each expert
                ci_avg = ci.mean()
                
                
                error_i = ci_avg - ci
                
                self.update = self.bias_update_speed * torch.sign(error_i)  # Update routing bias
                self.routing_bias.add_(self.update)
                # self.routing_bias = self.routing_bias + self.update

        return out
    
    
# import numpy as np
class SinusoidalPositionalEmbeddings(nn.Module):
    def __init__(
        self,
        device,
        embeddings_dims: int = model_args.embeddings_dims,
        block_size: int = model_args.block_size,
        batch_size: int = model_args.batch_size,
    ):
        super().__init__()

        self.embeddings_dims = embeddings_dims
        self.block_size = block_size
        self.batch_size = batch_size
        self.device = device
        
        # Create positional encoding matrix
        pe = torch.zeros(block_size, embeddings_dims)
        position = torch.arange(0, block_size, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, embeddings_dims, 2).float() * (-math.log(10000.0) / embeddings_dims))
        
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        
        # Register as buffer so it's not a parameter but moves with the model
        self.register_buffer('pe', pe.unsqueeze(0))  # Shape: [1, block_size, embeddings_dims]

    def forward(self, x):
        # x shape: [batch_size, seq_len, embeddings_dims]
        batch_size, seq_len, _ = x.shape
        
        # Add positional embeddings
        # pe[:, :seq_len] ensures we only use the positional embeddings up to the sequence length
        pos_emb = self.pe[:, :seq_len].to(x.device)
        return pos_emb



class LatentAttention(nn.Module):
    def __init__(
        self,
        attn_dropout = model_args.attn_dropout,
        embeddings_dims = model_args.embeddings_dims,
        no_of_heads = model_args.no_of_heads,
        device = model_args.device
    ):
        super().__init__()
        self.head_size = embeddings_dims // no_of_heads
        self.no_of_heads = no_of_heads
        # if(model_args.use_flash_attention==False):
        self.latent_dim = model_args.latent_dim
        self.W_k = nn.Linear(in_features=self.latent_dim, out_features=self.head_size, device=device, bias=False)
        self.W_v = nn.Linear(in_features=self.latent_dim, out_features=self.head_size, device=device, bias=False)
        self.W_dkv = nn.Linear(in_features=model_args.embeddings_dims, out_features=self.latent_dim, device=device, bias=False) # 3 for query, key and value
        self.query = nn.Linear(in_features=embeddings_dims, out_features=self.head_size, device=model_args.device, bias=False)
        # self.keys = nn.Linear(in_features=embeddings_dims, out_features=self.head_size,device=model_args.device, bias=False)
        # self.values = nn.Linear(in_features=embeddings_dims, out_features=self.head_size, device=model_args.device,bias=False)
    # self.dropout = nn.Dropout(p = attn_dropout)
        

        self.dropout = nn.Dropout(p = attn_dropout)
        self.device = device

        # Use sinusoidal positional embeddings instead of rotary
        self.pos_embeddings = SinusoidalPositionalEmbeddings(embeddings_dims=self.head_size, device=device)
        # self.register_buffer('absorbed_q', None)
        # self.absorbed_q = None
        
    def forward(self, x, kv_cache=None, mask=None):
        batch_size, block_size, embd_dims = x.shape

        # k = self.keys(x)
        # q = self.query(x)
        # v = self.values(x)
        
        self.latent_matrix = self.W_dkv(x)

        # print("q shape: ", q.shape)
        
        # print("Shape of latent mat: ", self.query.weight.shape)
        # print("Shape of compressed_k: ", self.W_k.weight.shape)
        
        # if(self.absorbed_q is None):
        self.absorbed_q = torch.matmul(self.query.weight.T , self.W_k.weight)
        
        
        # weights = q @ torch.transpose(k, dim0=-2, dim1=-1) * (k.shape[-1] ** -0.5)

        # if kv_cache is None:
        if kv_cache is None:
            kv_cache = self.latent_matrix
        else:
            # print(kv_cache)
            # print("Shape of latent matrix: ", self.latent_matrix.shape)
            # print("Shape of kv_cache: ", kv_cache.shape)
            kv_cache = torch.cat([kv_cache, self.latent_matrix], dim=1)

        self.compressed_k = self.W_k(kv_cache)
        self.compressed_v = self.W_v(kv_cache)
        
        q_res = torch.matmul(x , self.absorbed_q)
        weights =  q_res @ torch.transpose(kv_cache, dim0=-2, dim1=-1) * (self.head_size ** -0.5)  # [batch_size, block_size, block_size]
        # print("Shape of weights: ", weights.shape)
        # print("Shape of kv_cache: ", kv_cache.shape)
        if(mask is not None):
            weights = weights.masked_fill(mask == 0, float('-1e20')) #Masking the attention weights
            
        masked_table = torch.tril(torch.ones(q_res.shape[1], kv_cache.shape[1], device=model_args.device))

        masked_values = weights.masked_fill(masked_table[: q_res.shape[1], : kv_cache.shape[1]] == 0, float('-1e20'))
        weights_normalized = nn.functional.softmax(masked_values, dim=-1) #Normalize along the embeddings dimension for all the tokens
        weights_normalized = self.dropout(weights_normalized)
        
        # print("Shape of weights_normalized: ", weights_normalized.shape)
        # Apply positional embeddings to the output
        
        
        
        
        # print("Shape of compressed_v: ", self.compressed_v.shape)
        out = weights_normalized @ self.compressed_v
        
        # out = self.pos_embeddings(out)
        return out, kv_cache

# MHA


class MHLA(nn.Module):
    def __init__(
        self,
        device,
        attn_dropout = model_args.attn_dropout,
        embeddings_dims = model_args.embeddings_dims,
        no_of_heads = model_args.no_of_heads,
    ):
        super().__init__()
        self.heads = nn.ModuleList([LatentAttention(attn_dropout=attn_dropout, embeddings_dims=embeddings_dims, no_of_heads=no_of_heads) for _ in range(no_of_heads)])
        self.dropout = nn.Dropout(p = attn_dropout)
        self.linear = nn.Linear(in_features=embeddings_dims, out_features=embeddings_dims, device=device, bias=False) # 12 (no of heads) * (batch_size) 64 = 768 -> gives out the text embeddings
        
    def forward(self, x, kv_cache=None, mask=None):
        # concat = torch.cat([head(x, kv_cache=kv_cache, mask=mask) for head in self.heads], dim=-1)
        res = []
        for head in self.heads:
            head_out, kv_cache = head(x, kv_cache=kv_cache, mask=mask)
            res.append(head_out)
        concat = torch.cat(res, dim=-1)  # Concatenate along the last dimension
        linear_layer = self.linear(concat)
        out = self.dropout(linear_layer)
        return out, kv_cache

class FFN(nn.Module):
    def __init__(self,
                  device,
                  embeddings_dims: int = model_args.embeddings_dims,
                  block_size: int = model_args.block_size,
                  vocab_size: int = model_args.vocab_size,
                   dropout = model_args.dropout

                 ):
        super().__init__()

        self.linear_layer = nn.Linear(in_features=embeddings_dims, out_features=embeddings_dims,  dtype=torch.float32,  device = device)
        self.linear_layer2 = nn.Linear(in_features=embeddings_dims, out_features=embeddings_dims,  dtype=torch.float32, device = device)

        self.dropout = nn.Dropout(p = dropout)  # Uncommenting the dropout line
    def forward(self, x):

        x = self.linear_layer(x)
        x = F.gelu(x)
        x = self.linear_layer2(x)
        x = F.gelu(x)
        # x = self.dropout(x)  # Uncommenting the dropout line
        return x







class DecoderLayer(nn.Module):
    def __init__(self,
                device,
                attn_dropout: float = model_args.attn_dropout,
                no_of_heads: int = model_args.no_of_heads,
                embeddings_dims: int = model_args.embeddings_dims,
                dropout = model_args.dropout,
                block_size: int = model_args.block_size,
                vocab_size: int = model_args.vocab_size,

                 ) :
        super().__init__()

        # self.base_freq = model_args.base_freq
        # self.feedforward_network = FFN(embeddings_dims=embeddings_dims, block_size=block_size, vocab_size=vocab_size,  device = device)
        self.mha = MHLA(attn_dropout=attn_dropout, embeddings_dims=embeddings_dims, no_of_heads=no_of_heads, device=device)
        self.layer_norm1 = Normalization(embeddings_dims=embeddings_dims)
        self.layer_norm2 = Normalization(embeddings_dims=embeddings_dims)
        # self.layer_norm3 = Normalization(embeddings_dims=embeddings_dims)
        self.dropout = nn.Dropout(p = dropout)

        self.moe_block = MoeLayer(dropout=dropout, embeddings_size=embeddings_dims)

    def forward(self, x, kv_cache=None, ffn=None, mask=None):

        out, kv_cache = self.mha(self.layer_norm1(x), kv_cache=kv_cache, mask=mask)  #Very important step -> Layer Norm on input and then passes it to the subsequent blocks
        x = x + out  # Fixed: removed in-place operation
        x = x + self.moe_block(self.layer_norm2(x)) #Very important step

        return x, kv_cache


class Block(nn.Module):
    def __init__(self,
                  device,
                  embeddings_dims: int = model_args.embeddings_dims,
                  no_of_decoder_layers: int = model_args.no_of_decoder_layers,
                  block_size: int = model_args.block_size,
                  vocab_size: int = model_args.vocab_size,
                  dropout = model_args.dropout

                 ) :
        super().__init__()
        self.base_freq = model_args.base_freq
        # self.embeddings = nn.Embedding(num_embeddings=vocab_size, embedding_dim=embeddings_dims,  dtype=torch.float32,  device = device)
        self.decoder = nn.ModuleList(DecoderLayer(embeddings_dims=embeddings_dims, block_size=block_size, vocab_size=vocab_size, dropout=dropout,  device = device) for _ in range(no_of_decoder_layers))
        # self.linear_layer = nn.Linear(in_features=embeddings_dims, out_features=vocab_size,  dtype=torch.float32,  device = device)
        self.dropout = nn.Dropout(p = dropout)
        self.norm = Normalization(embeddings_dims)
        
        #weight tying
        # self.embeddings.weight = self.linear_layer.weight

        self.apply(self._init_weights)

    def _init_weights(self, module):
            if isinstance(module, nn.Linear):
                nn.init.normal_(module.weight, mean=0.0, std=0.02)

                if module.bias is not None:
                    nn.init.zeros_(module.bias)
            elif isinstance(module, nn.Embedding):
                nn.init.normal_(module.weight, mean=0.0, std=0.02)



    def forward(self, x, mask=None, actual_labels = None, inference=False):
        index = 0
        no_of_layers = 0
        # x = self.embeddings(x)
        # # x = self.dropout(x)
        # if(mask is not None):
        kv_cache = None
        #     x = x * mask
        #     # mask = mask.unsqueeze(-1)
        # x = self.decoder(x)
        for layer in self.decoder:
            # if no_of_layers % 2 == 0:
            #     if no_of_layers % 4 == 0:
            #         # print("x shape: ", x.shape)
            #         x = layer(x, rope=False, ffn=True, mask=mask)
            #     x = layer(x, rope=True, ffn=True, mask=mask)
                
            #     # print("x shape: ", x.shape)
            # else:
            #     # print("x shape local: ", x.shape)
            #     if no_of_layers % 4 == 0:
            #         # print("x shape: ", x.shape)
            #         x = layer(x, rope=False, ffn=False, mask=mask)
            x, kv_cache = layer(x, kv_cache=kv_cache, ffn=None, mask=mask)
                # print("x shape local: ", x.shape)
            # no_of_layers += 1
        # print(x.shape)
        x = self.dropout(x)
        x = 2 * ((model_args.no_of_decoder_layers) ** -0.5) * x
        x = self.norm(x)
        
        # if(inference):
        #     out = self.linear_layer(x)
        #     return out
        # if(model_args.use_liger):  
        #     # print("yo")
        #     y = x.contiguous().view(-1, model_args.embeddings_dims)
        #     if(actual_labels is not None):
        #         labels = actual_labels.contiguous().view(-1)
                
        #         # Pass linear layer weights FIRST as required [2][5]
        #         # ignore_index is already set during initialization
        #         loss = self.le_loss(self.linear_layer.weight, y, labels)
        #         return loss
        # else:
        #     # print("Hi")
        #     out = self.linear_layer(x)
        #     return out

        return x



class DeepSeekV3(nn.Module):
    def __init__(self,
                 device,
                 embeddings_dims: int = model_args.embeddings_dims,
                 block_size: int = model_args.block_size,
                 vocab_size: int = model_args.vocab_size,
                 dropout = model_args.dropout
                ):
        super().__init__()
        self.decoder = Block(device=device, embeddings_dims=embeddings_dims, no_of_decoder_layers=model_args.no_of_decoder_layers, block_size=block_size, vocab_size=vocab_size, dropout=dropout)
        self.embedding = nn.Embedding(num_embeddings=vocab_size, embedding_dim=embeddings_dims, dtype=torch.float32, device=device)
        self.pos_embeddings = SinusoidalPositionalEmbeddings(embeddings_dims=embeddings_dims, device=device)
        self.linear_layer = nn.Linear(in_features=embeddings_dims, out_features=vocab_size, dtype=torch.float32, device=device, bias=False)
        # Weight tying - tie embedding and output projection weights
        self.embedding.weight = self.linear_layer.weight
        
        # Initialize the LigerFusedLinearCrossEntropyLoss for optimized training
        if model_args.use_liger:
            from liger_kernel.transformers import LigerFusedLinearCrossEntropyLoss
            # Initialize with ignore_index for padding tokens if enabled
            if model_args.ignore_pad_token_in_loss:
                self.le_loss = LigerFusedLinearCrossEntropyLoss(
                    ignore_index=tokenizer.pad_token_id
                )
            else:
                self.le_loss = LigerFusedLinearCrossEntropyLoss()

    def forward(self, x, inference=False, mask=None):
        if(mask is not None):
            x = x * mask
            
        x = self.embedding(x)
        x = x + self.pos_embeddings(x)  # Add positional embeddings
        B, T, C = x.shape
            
        if inference:
            # For inference, we only need the last token prediction
            decoder_out = self.decoder(x, mask=mask)
            logits = self.linear_layer(decoder_out)
            return logits
        else:
            decoder_out = self.decoder(x, mask=mask)
            logits = self.linear_layer(decoder_out)
            return logits