Spaces:
Sleeping
Sleeping
Update knowledge_engine.py
Browse files- knowledge_engine.py +31 -21
knowledge_engine.py
CHANGED
|
@@ -1,10 +1,11 @@
|
|
| 1 |
import os
|
| 2 |
import pickle
|
| 3 |
-
from typing import Dict, Any
|
| 4 |
from datetime import datetime
|
| 5 |
from concurrent.futures import ThreadPoolExecutor
|
| 6 |
|
| 7 |
from config import Config
|
|
|
|
| 8 |
from langchain_community.document_loaders import TextLoader, DirectoryLoader
|
| 9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 10 |
from langchain_community.vectorstores import FAISS
|
|
@@ -12,7 +13,7 @@ from langchain.chains import RetrievalQA
|
|
| 12 |
from langchain.prompts import PromptTemplate
|
| 13 |
from langchain.retrievers import BM25Retriever
|
| 14 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 15 |
-
from
|
| 16 |
|
| 17 |
class KnowledgeManager:
|
| 18 |
def __init__(self):
|
|
@@ -23,18 +24,18 @@ class KnowledgeManager:
|
|
| 23 |
|
| 24 |
def _init_embeddings(self):
|
| 25 |
print("[i] Using Hugging Face embeddings")
|
| 26 |
-
return HuggingFaceEmbeddings(
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
def _init_llm(self):
|
| 29 |
-
print("[i] Using
|
| 30 |
-
return
|
| 31 |
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
"max_new_tokens": 512,
|
| 36 |
-
"do_sample": True
|
| 37 |
-
}
|
| 38 |
)
|
| 39 |
|
| 40 |
def _init_retrievers(self):
|
|
@@ -76,7 +77,11 @@ class KnowledgeManager:
|
|
| 76 |
)
|
| 77 |
chunks = splitter.split_documents(docs)
|
| 78 |
|
| 79 |
-
vector_db = FAISS.from_documents(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
vector_db.save_local(str(Config.VECTOR_STORE_PATH))
|
| 81 |
|
| 82 |
bm25_retriever = BM25Retriever.from_documents(chunks)
|
|
@@ -92,16 +97,19 @@ class KnowledgeManager:
|
|
| 92 |
with open(Config.KNOWLEDGE_DIR / "sirraya_xbrain.txt", "w", encoding="utf-8") as f:
|
| 93 |
f.write(default_text)
|
| 94 |
|
| 95 |
-
def _parallel_retrieve(self, question: str):
|
| 96 |
def retrieve_with_bm25():
|
| 97 |
-
return self.bm25_retriever.
|
| 98 |
|
| 99 |
def retrieve_with_vector():
|
| 100 |
retriever = self.vector_db.as_retriever(
|
| 101 |
search_type="similarity_score_threshold",
|
| 102 |
-
search_kwargs={
|
|
|
|
|
|
|
|
|
|
| 103 |
)
|
| 104 |
-
return retriever.
|
| 105 |
|
| 106 |
with ThreadPoolExecutor(max_workers=2) as executor:
|
| 107 |
bm25_future = executor.submit(retrieve_with_bm25)
|
|
@@ -132,7 +140,7 @@ Answer:"""
|
|
| 132 |
return RetrievalQA.from_chain_type(
|
| 133 |
llm=self._init_llm(),
|
| 134 |
chain_type="stuff",
|
| 135 |
-
retriever=self.vector_db.as_retriever(search_kwargs={"k":
|
| 136 |
chain_type_kwargs={
|
| 137 |
"prompt": PromptTemplate(
|
| 138 |
template=prompt_template,
|
|
@@ -155,10 +163,12 @@ Answer:"""
|
|
| 155 |
docs = self._parallel_retrieve(question)
|
| 156 |
|
| 157 |
if not docs:
|
| 158 |
-
retriever = self.vector_db.as_retriever(
|
| 159 |
-
|
|
|
|
|
|
|
| 160 |
|
| 161 |
-
result = self.qa_chain.invoke({"
|
| 162 |
processing_time = (datetime.now() - start_time).total_seconds() * 1000
|
| 163 |
|
| 164 |
return {
|
|
@@ -169,7 +179,7 @@ Answer:"""
|
|
| 169 |
except Exception as e:
|
| 170 |
print(f"[!] Query error: {e}")
|
| 171 |
return {
|
| 172 |
-
"answer": f"Error: {e}",
|
| 173 |
"processing_time": 0,
|
| 174 |
"source_chunks": []
|
| 175 |
}
|
|
|
|
| 1 |
import os
|
| 2 |
import pickle
|
| 3 |
+
from typing import Dict, Any, List
|
| 4 |
from datetime import datetime
|
| 5 |
from concurrent.futures import ThreadPoolExecutor
|
| 6 |
|
| 7 |
from config import Config
|
| 8 |
+
from langchain_core.documents import Document
|
| 9 |
from langchain_community.document_loaders import TextLoader, DirectoryLoader
|
| 10 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 11 |
from langchain_community.vectorstores import FAISS
|
|
|
|
| 13 |
from langchain.prompts import PromptTemplate
|
| 14 |
from langchain.retrievers import BM25Retriever
|
| 15 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 16 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
| 17 |
|
| 18 |
class KnowledgeManager:
|
| 19 |
def __init__(self):
|
|
|
|
| 24 |
|
| 25 |
def _init_embeddings(self):
|
| 26 |
print("[i] Using Hugging Face embeddings")
|
| 27 |
+
return HuggingFaceEmbeddings(
|
| 28 |
+
model_name="sentence-transformers/all-mpnet-base-v2",
|
| 29 |
+
model_kwargs={'device': 'cpu'}
|
| 30 |
+
)
|
| 31 |
|
| 32 |
def _init_llm(self):
|
| 33 |
+
print("[i] Using HuggingFaceEndpoint with Mistral-7B")
|
| 34 |
+
return HuggingFaceEndpoint(
|
| 35 |
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
|
| 36 |
+
temperature=0.1,
|
| 37 |
+
max_length=512,
|
| 38 |
+
token=os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
|
|
|
|
|
|
|
|
|
| 39 |
)
|
| 40 |
|
| 41 |
def _init_retrievers(self):
|
|
|
|
| 77 |
)
|
| 78 |
chunks = splitter.split_documents(docs)
|
| 79 |
|
| 80 |
+
vector_db = FAISS.from_documents(
|
| 81 |
+
chunks,
|
| 82 |
+
self.embeddings,
|
| 83 |
+
distance_strategy="COSINE" # Ensures scores between 0-1
|
| 84 |
+
)
|
| 85 |
vector_db.save_local(str(Config.VECTOR_STORE_PATH))
|
| 86 |
|
| 87 |
bm25_retriever = BM25Retriever.from_documents(chunks)
|
|
|
|
| 97 |
with open(Config.KNOWLEDGE_DIR / "sirraya_xbrain.txt", "w", encoding="utf-8") as f:
|
| 98 |
f.write(default_text)
|
| 99 |
|
| 100 |
+
def _parallel_retrieve(self, question: str) -> List[Document]:
|
| 101 |
def retrieve_with_bm25():
|
| 102 |
+
return self.bm25_retriever.invoke(question) # Updated to use invoke()
|
| 103 |
|
| 104 |
def retrieve_with_vector():
|
| 105 |
retriever = self.vector_db.as_retriever(
|
| 106 |
search_type="similarity_score_threshold",
|
| 107 |
+
search_kwargs={
|
| 108 |
+
"k": Config.MAX_CONTEXT_CHUNKS,
|
| 109 |
+
"score_threshold": 0.83
|
| 110 |
+
}
|
| 111 |
)
|
| 112 |
+
return retriever.invoke(question) # Updated to use invoke()
|
| 113 |
|
| 114 |
with ThreadPoolExecutor(max_workers=2) as executor:
|
| 115 |
bm25_future = executor.submit(retrieve_with_bm25)
|
|
|
|
| 140 |
return RetrievalQA.from_chain_type(
|
| 141 |
llm=self._init_llm(),
|
| 142 |
chain_type="stuff",
|
| 143 |
+
retriever=self.vector_db.as_retriever(search_kwargs={"k": Config.MAX_CONTEXT_CHUNKS}),
|
| 144 |
chain_type_kwargs={
|
| 145 |
"prompt": PromptTemplate(
|
| 146 |
template=prompt_template,
|
|
|
|
| 163 |
docs = self._parallel_retrieve(question)
|
| 164 |
|
| 165 |
if not docs:
|
| 166 |
+
retriever = self.vector_db.as_retriever(
|
| 167 |
+
search_kwargs={"k": Config.MAX_CONTEXT_CHUNKS}
|
| 168 |
+
)
|
| 169 |
+
docs = retriever.invoke(question) # Updated to use invoke()
|
| 170 |
|
| 171 |
+
result = self.qa_chain.invoke({"query": question, "input_documents": docs})
|
| 172 |
processing_time = (datetime.now() - start_time).total_seconds() * 1000
|
| 173 |
|
| 174 |
return {
|
|
|
|
| 179 |
except Exception as e:
|
| 180 |
print(f"[!] Query error: {e}")
|
| 181 |
return {
|
| 182 |
+
"answer": f"Error processing your query: {str(e)}",
|
| 183 |
"processing_time": 0,
|
| 184 |
"source_chunks": []
|
| 185 |
}
|