Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import pandas as pd | |
| import matplotlib.pyplot as plt | |
| import seaborn as sns | |
| import base64 | |
| import yfinance as yf | |
| import streamlit as st | |
| st.set_option('deprecation.showPyplotGlobalUse', False) | |
| st.title('Scrapping Yahoo Finance App') | |
| st.markdown(""" | |
| This app retrieves the list of the S&P 500 (from Wikipedia) and its corresponding stock closing price (year-to-date)! | |
| * Python libraries: base64, pandas, streamlit, numpy, matplotlib, seaborn | |
| * Data source: [Wikipedia](https://en.wikipedia.org/wiki/List_of_S%26P_500_companies). | |
| """) | |
| st.sidebar.header('User Input Features') | |
| #Scrappage des donnees sur Wikipedia | |
| def load_data(): | |
| url = "https://en.wikipedia.org/wiki/List_of_S%26P_500_companies" | |
| html = pd.read_html(url,header= 0) | |
| df = html[0] | |
| return df | |
| df = load_data() | |
| sector = df.groupby('GICS Sector') | |
| #Sidebar - Sector Selection | |
| sorted_sector_unique = sorted(df['GICS Sector'].unique()) | |
| selected_sector = st.sidebar.multiselect('Sector',sorted_sector_unique) | |
| #Filtering datas | |
| df_selected_sector = df[(df['GICS Sector'].isin(selected_sector))] | |
| st.header('Display companies in Selected sector') | |
| st.write('Data Dimension: ' + str(df_selected_sector.shape[0]) + ' rows and ' + str(df_selected_sector.shape[1]) + ' columns.') | |
| st.dataframe(df_selected_sector) | |
| #Download des datas selectionnees dans le sidebar | |
| def filedownload(df): | |
| csv = df.to_csv(index=False) | |
| b64 = base64.b64encode(csv.encode()).decode() # strings <-> bytes conversions | |
| href = f'<a href="data:file/csv;base64,{b64}" download="SP500.csv">Download CSV File</a>' | |
| return href | |
| st.markdown(filedownload(df_selected_sector), unsafe_allow_html=True) | |
| #Download datas correspondantes de yahoo finance | |
| data = yf.download( | |
| tickers = list(df_selected_sector[:10].Symbol), | |
| period="ytd", | |
| interval="1d", | |
| group_by="ticker", | |
| auto_adjust=True, | |
| prepost=True, | |
| threads=True, | |
| proxy=None | |
| ) | |
| #Plot Closing price of Selected Symbols | |
| def price_plot(symbol): | |
| df = pd.DataFrame(data[symbol].Close) | |
| df['Date'] = df.index | |
| plt.fill_between(df.Date, df.Close, color='skyblue', alpha=0.3) | |
| plt.plot(df.Date, df.Close, color='skyblue', alpha=0.8) | |
| plt.xticks(rotation=90) | |
| plt.title(symbol, fontweight='bold') | |
| plt.xlabel('Date', fontweight='bold') | |
| plt.ylabel('Closing Price', fontweight='bold') | |
| return st.pyplot() | |
| num_company = st.sidebar.slider('Number of companies',1,5) | |
| if st.button('Show plots'): | |
| st.header('Show Closing price') | |
| for i in list(df_selected_sector.Symbol)[:num_company]: | |
| price_plot(i) |