Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -16,7 +16,8 @@ DRIVE_THESES_ID = "1K2Mtze6ZdvfKUsFMCOWlRBjDq-ZnJNrv"
|
|
| 16 |
EMB_DIR = "embeddings"
|
| 17 |
os.makedirs(EMB_DIR, exist_ok=True)
|
| 18 |
|
| 19 |
-
|
|
|
|
| 20 |
model = SentenceTransformer(MODEL_NAME)
|
| 21 |
|
| 22 |
# ================== تحميل من Drive ==================
|
|
@@ -28,26 +29,19 @@ def download_from_drive(file_id, output):
|
|
| 28 |
download_from_drive(DRIVE_BOOKS_ID, BOOKS_FILE)
|
| 29 |
download_from_drive(DRIVE_THESES_ID, THESES_FILE)
|
| 30 |
|
| 31 |
-
# ================== تحميل
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
raise FileNotFoundError("❌ تأكدي من وجود book.xlsx و theses.xlsx")
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
theses["المصدر"] = "رسالة"
|
| 41 |
-
|
| 42 |
-
merged = pd.concat([books, theses], ignore_index=True)
|
| 43 |
-
return merged
|
| 44 |
-
|
| 45 |
-
library_df = load_and_merge()
|
| 46 |
-
|
| 47 |
-
# ================== Embeddings ==================
|
| 48 |
def emb_path(name):
|
| 49 |
return os.path.join(EMB_DIR, f"{name}.pkl")
|
| 50 |
|
|
|
|
| 51 |
def build_or_load_embeddings(df, name):
|
| 52 |
path = emb_path(name)
|
| 53 |
if os.path.exists(path):
|
|
@@ -58,13 +52,21 @@ def build_or_load_embeddings(df, name):
|
|
| 58 |
return emb
|
| 59 |
except Exception:
|
| 60 |
pass
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
| 62 |
emb = model.encode(texts, convert_to_numpy=True, show_progress_bar=True)
|
| 63 |
with open(path,"wb") as f:
|
| 64 |
pickle.dump(emb,f)
|
| 65 |
return emb
|
| 66 |
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
# ================== CSS ==================
|
| 70 |
CUSTOM_CSS = """
|
|
@@ -74,25 +76,23 @@ CUSTOM_CSS = """
|
|
| 74 |
.styled-table tr:nth-child(even){background-color:#f9f9f9;}
|
| 75 |
.styled-table tr:nth-child(odd){background-color:#fff;}
|
| 76 |
.styled-table th{background-color:#4da6ff;color:white;}
|
| 77 |
-
a{color:#0066cc;text-decoration:none;}
|
| 78 |
-
a:hover{text-decoration:underline;}
|
| 79 |
</style>
|
| 80 |
"""
|
| 81 |
|
| 82 |
-
# ================== عرض النتائج HTML ==================
|
| 83 |
def results_to_html(df):
|
| 84 |
if df.empty:
|
| 85 |
return "<p>❌ لم يتم العثور على نتائج</p>"
|
| 86 |
|
| 87 |
-
|
|
|
|
| 88 |
if col not in df.columns:
|
| 89 |
df[col] = "-"
|
| 90 |
|
| 91 |
html_results = ""
|
| 92 |
for _, row in df.iterrows():
|
| 93 |
-
|
| 94 |
-
html_results +=
|
| 95 |
-
|
| 96 |
return CUSTOM_CSS + html_results
|
| 97 |
|
| 98 |
# ================== البحث ==================
|
|
@@ -102,16 +102,19 @@ def local_search_df(query, mode, source_filter):
|
|
| 102 |
|
| 103 |
df_search = library_df.copy()
|
| 104 |
|
|
|
|
| 105 |
if source_filter != "الكل":
|
| 106 |
df_search = df_search[df_search["المصدر"] == source_filter]
|
| 107 |
|
|
|
|
| 108 |
if mode == "نصي":
|
| 109 |
df = df_search[df_search["العنوان"].str.contains(query, case=False, na=False)]
|
|
|
|
| 110 |
else:
|
| 111 |
q_emb = model.encode([query], convert_to_numpy=True)
|
| 112 |
scores = util.cos_sim(q_emb, library_embeddings)[0].cpu().numpy()
|
| 113 |
df_search["score"] = scores
|
| 114 |
-
df = df_search.sort_values("score", ascending=False)
|
| 115 |
|
| 116 |
return results_to_html(df), df
|
| 117 |
|
|
@@ -124,7 +127,7 @@ def save_to_excel(df):
|
|
| 124 |
df.to_excel(tmp.name, index=False)
|
| 125 |
return tmp.name
|
| 126 |
|
| 127 |
-
# ==================
|
| 128 |
IMAGE_URL = "https://drive.google.com/uc?id=1y1cbJbdXSrhkEM7bMDrAUKr0dTiHPe-y"
|
| 129 |
|
| 130 |
with gr.Blocks(title="البحث الدلالي بالمكتبة") as app:
|
|
@@ -146,6 +149,7 @@ with gr.Blocks(title="البحث الدلالي بالمكتبة") as app:
|
|
| 146 |
)
|
| 147 |
|
| 148 |
btn_search = gr.Button("🔎 بحث")
|
|
|
|
| 149 |
df_state = gr.State()
|
| 150 |
output_html = gr.HTML()
|
| 151 |
file_out = gr.File(label="⬇️ تحميل النتائج")
|
|
|
|
| 16 |
EMB_DIR = "embeddings"
|
| 17 |
os.makedirs(EMB_DIR, exist_ok=True)
|
| 18 |
|
| 19 |
+
# ================== تحميل نموذج Semantic ==================
|
| 20 |
+
MODEL_NAME = "all-MiniLM-L6-v2"
|
| 21 |
model = SentenceTransformer(MODEL_NAME)
|
| 22 |
|
| 23 |
# ================== تحميل من Drive ==================
|
|
|
|
| 29 |
download_from_drive(DRIVE_BOOKS_ID, BOOKS_FILE)
|
| 30 |
download_from_drive(DRIVE_THESES_ID, THESES_FILE)
|
| 31 |
|
| 32 |
+
# ================== تحميل الملفات ==================
|
| 33 |
+
books_df = pd.read_excel(BOOKS_FILE).fillna("")
|
| 34 |
+
theses_df = pd.read_excel(THESES_FILE).fillna("")
|
|
|
|
| 35 |
|
| 36 |
+
# إضافة نوع المصدر
|
| 37 |
+
books_df["المصدر"] = "كتاب"
|
| 38 |
+
theses_df["المصدر"] = "رسالة"
|
| 39 |
|
| 40 |
+
# ================== مسار الـ embeddings ==================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
def emb_path(name):
|
| 42 |
return os.path.join(EMB_DIR, f"{name}.pkl")
|
| 43 |
|
| 44 |
+
# ================== بناء أو تحميل الـ embeddings ==================
|
| 45 |
def build_or_load_embeddings(df, name):
|
| 46 |
path = emb_path(name)
|
| 47 |
if os.path.exists(path):
|
|
|
|
| 52 |
return emb
|
| 53 |
except Exception:
|
| 54 |
pass
|
| 55 |
+
# تأكد من وجود عمود Title
|
| 56 |
+
if "Title" not in df.columns:
|
| 57 |
+
df["Title"] = df["العنوان"]
|
| 58 |
+
texts = df["Title"].astype(str).tolist()
|
| 59 |
emb = model.encode(texts, convert_to_numpy=True, show_progress_bar=True)
|
| 60 |
with open(path,"wb") as f:
|
| 61 |
pickle.dump(emb,f)
|
| 62 |
return emb
|
| 63 |
|
| 64 |
+
books_embeddings = build_or_load_embeddings(books_df,"books")
|
| 65 |
+
theses_embeddings = build_or_load_embeddings(theses_df,"theses")
|
| 66 |
+
|
| 67 |
+
# ================== دمج المكتبة ==================
|
| 68 |
+
library_df = pd.concat([books_df, theses_df], ignore_index=True)
|
| 69 |
+
library_embeddings = np.concatenate([books_embeddings, theses_embeddings], axis=0)
|
| 70 |
|
| 71 |
# ================== CSS ==================
|
| 72 |
CUSTOM_CSS = """
|
|
|
|
| 76 |
.styled-table tr:nth-child(even){background-color:#f9f9f9;}
|
| 77 |
.styled-table tr:nth-child(odd){background-color:#fff;}
|
| 78 |
.styled-table th{background-color:#4da6ff;color:white;}
|
|
|
|
|
|
|
| 79 |
</style>
|
| 80 |
"""
|
| 81 |
|
| 82 |
+
# ================== عرض النتائج HTML لكل نتيجة ==================
|
| 83 |
def results_to_html(df):
|
| 84 |
if df.empty:
|
| 85 |
return "<p>❌ لم يتم العثور على نتائج</p>"
|
| 86 |
|
| 87 |
+
# التأكد من الأعمدة المطلوبة
|
| 88 |
+
for col in ["المؤلف","العنوان","سنة النشر","الموقع على الرف","المصدر"]:
|
| 89 |
if col not in df.columns:
|
| 90 |
df[col] = "-"
|
| 91 |
|
| 92 |
html_results = ""
|
| 93 |
for _, row in df.iterrows():
|
| 94 |
+
row_df = pd.DataFrame([row[["المؤلف","العنوان","سنة النشر","الموقع على الرف","المصدر"]]])
|
| 95 |
+
html_results += row_df.to_html(index=False, escape=False, classes="styled-table", border=0)
|
|
|
|
| 96 |
return CUSTOM_CSS + html_results
|
| 97 |
|
| 98 |
# ================== البحث ==================
|
|
|
|
| 102 |
|
| 103 |
df_search = library_df.copy()
|
| 104 |
|
| 105 |
+
# فلترة حسب المصدر
|
| 106 |
if source_filter != "الكل":
|
| 107 |
df_search = df_search[df_search["المصدر"] == source_filter]
|
| 108 |
|
| 109 |
+
# بحث نصي
|
| 110 |
if mode == "نصي":
|
| 111 |
df = df_search[df_search["العنوان"].str.contains(query, case=False, na=False)]
|
| 112 |
+
# بحث دلالي
|
| 113 |
else:
|
| 114 |
q_emb = model.encode([query], convert_to_numpy=True)
|
| 115 |
scores = util.cos_sim(q_emb, library_embeddings)[0].cpu().numpy()
|
| 116 |
df_search["score"] = scores
|
| 117 |
+
df = df_search.sort_values("score", ascending=False)
|
| 118 |
|
| 119 |
return results_to_html(df), df
|
| 120 |
|
|
|
|
| 127 |
df.to_excel(tmp.name, index=False)
|
| 128 |
return tmp.name
|
| 129 |
|
| 130 |
+
# ================== واجهة Gradio ==================
|
| 131 |
IMAGE_URL = "https://drive.google.com/uc?id=1y1cbJbdXSrhkEM7bMDrAUKr0dTiHPe-y"
|
| 132 |
|
| 133 |
with gr.Blocks(title="البحث الدلالي بالمكتبة") as app:
|
|
|
|
| 149 |
)
|
| 150 |
|
| 151 |
btn_search = gr.Button("🔎 بحث")
|
| 152 |
+
|
| 153 |
df_state = gr.State()
|
| 154 |
output_html = gr.HTML()
|
| 155 |
file_out = gr.File(label="⬇️ تحميل النتائج")
|