Update app.py
#241
by
dar3512
- opened
app.py
CHANGED
|
@@ -1,103 +1,189 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
| 4 |
-
import inspect
|
| 5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
# (Keep Constants as is)
|
| 8 |
# --- Constants ---
|
| 9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 10 |
|
| 11 |
-
# ---
|
| 12 |
-
# ----- THIS IS
|
| 13 |
class BasicAgent:
|
| 14 |
-
def __init__(self):
|
| 15 |
-
print("BasicAgent initialized.")
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
def
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
|
|
|
|
|
|
|
|
|
| 30 |
if profile:
|
| 31 |
-
username=
|
| 32 |
print(f"User logged in: {username}")
|
| 33 |
else:
|
| 34 |
-
print("User not logged in.")
|
| 35 |
return "Please Login to Hugging Face with the button.", None
|
| 36 |
-
|
| 37 |
api_url = DEFAULT_API_URL
|
| 38 |
questions_url = f"{api_url}/questions"
|
| 39 |
submit_url = f"{api_url}/submit"
|
| 40 |
-
|
| 41 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 42 |
try:
|
| 43 |
-
agent = BasicAgent()
|
| 44 |
except Exception as e:
|
| 45 |
-
print(f"Error instantiating agent: {e}")
|
| 46 |
return f"Error initializing agent: {e}", None
|
| 47 |
-
|
| 48 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 49 |
print(agent_code)
|
| 50 |
-
|
| 51 |
-
# 2. Fetch Questions
|
| 52 |
-
print(f"Fetching questions from: {questions_url}")
|
| 53 |
try:
|
| 54 |
response = requests.get(questions_url, timeout=15)
|
| 55 |
response.raise_for_status()
|
| 56 |
questions_data = response.json()
|
| 57 |
-
if not questions_data:
|
| 58 |
-
print("Fetched questions list is empty.")
|
| 59 |
-
return "Fetched questions list is empty or invalid format.", None
|
| 60 |
print(f"Fetched {len(questions_data)} questions.")
|
| 61 |
-
except requests.exceptions.RequestException as e:
|
| 62 |
-
print(f"Error fetching questions: {e}")
|
| 63 |
-
return f"Error fetching questions: {e}", None
|
| 64 |
-
except requests.exceptions.JSONDecodeError as e:
|
| 65 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 66 |
-
print(f"Response text: {response.text[:500]}")
|
| 67 |
-
return f"Error decoding server response for questions: {e}", None
|
| 68 |
except Exception as e:
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
# 3. Run your Agent
|
| 73 |
results_log = []
|
| 74 |
answers_payload = []
|
| 75 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
| 76 |
for item in questions_data:
|
| 77 |
task_id = item.get("task_id")
|
| 78 |
question_text = item.get("question")
|
| 79 |
-
if not
|
| 80 |
-
|
| 81 |
continue
|
| 82 |
try:
|
| 83 |
-
submitted_answer = agent(question_text)
|
| 84 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 85 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 86 |
except Exception as e:
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
if not answers_payload:
|
| 91 |
-
print("Agent did not produce any answers to submit.")
|
| 92 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 93 |
-
|
| 94 |
-
# 4. Prepare Submission
|
| 95 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 96 |
-
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 97 |
-
print(status_update)
|
| 98 |
-
|
| 99 |
-
# 5. Submit
|
| 100 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
| 101 |
try:
|
| 102 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
| 103 |
response.raise_for_status()
|
|
@@ -109,88 +195,28 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 109 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 110 |
f"Message: {result_data.get('message', 'No message received.')}"
|
| 111 |
)
|
| 112 |
-
|
| 113 |
-
results_df = pd.DataFrame(results_log)
|
| 114 |
-
return final_status, results_df
|
| 115 |
-
except requests.exceptions.HTTPError as e:
|
| 116 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
| 117 |
-
try:
|
| 118 |
-
error_json = e.response.json()
|
| 119 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
| 120 |
-
except requests.exceptions.JSONDecodeError:
|
| 121 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
| 122 |
-
status_message = f"Submission Failed: {error_detail}"
|
| 123 |
-
print(status_message)
|
| 124 |
-
results_df = pd.DataFrame(results_log)
|
| 125 |
-
return status_message, results_df
|
| 126 |
-
except requests.exceptions.Timeout:
|
| 127 |
-
status_message = "Submission Failed: The request timed out."
|
| 128 |
-
print(status_message)
|
| 129 |
-
results_df = pd.DataFrame(results_log)
|
| 130 |
-
return status_message, results_df
|
| 131 |
-
except requests.exceptions.RequestException as e:
|
| 132 |
-
status_message = f"Submission Failed: Network error - {e}"
|
| 133 |
-
print(status_message)
|
| 134 |
-
results_df = pd.DataFrame(results_log)
|
| 135 |
-
return status_message, results_df
|
| 136 |
except Exception as e:
|
| 137 |
-
|
| 138 |
-
print(status_message)
|
| 139 |
-
results_df = pd.DataFrame(results_log)
|
| 140 |
-
return status_message, results_df
|
| 141 |
|
| 142 |
-
|
| 143 |
-
# --- Build Gradio Interface using Blocks ---
|
| 144 |
with gr.Blocks() as demo:
|
| 145 |
-
gr.Markdown("#
|
| 146 |
gr.Markdown(
|
| 147 |
"""
|
| 148 |
**Instructions:**
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
---
|
| 155 |
-
**Disclaimers:**
|
| 156 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
| 157 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
| 158 |
"""
|
| 159 |
)
|
| 160 |
-
|
| 161 |
gr.LoginButton()
|
| 162 |
-
|
| 163 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 164 |
-
|
| 165 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
| 166 |
-
# Removed max_rows=10 from DataFrame constructor
|
| 167 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 168 |
-
|
| 169 |
-
run_button.click(
|
| 170 |
-
fn=run_and_submit_all,
|
| 171 |
-
outputs=[status_output, results_table]
|
| 172 |
-
)
|
| 173 |
|
| 174 |
if __name__ == "__main__":
|
| 175 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
| 176 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 177 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
| 178 |
-
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
| 179 |
-
|
| 180 |
-
if space_host_startup:
|
| 181 |
-
print(f"β
SPACE_HOST found: {space_host_startup}")
|
| 182 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
| 183 |
-
else:
|
| 184 |
-
print("βΉοΈ SPACE_HOST environment variable not found (running locally?).")
|
| 185 |
-
|
| 186 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
| 187 |
-
print(f"β
SPACE_ID found: {space_id_startup}")
|
| 188 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 189 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
| 190 |
-
else:
|
| 191 |
-
print("βΉοΈ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
| 192 |
-
|
| 193 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 194 |
-
|
| 195 |
-
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 196 |
demo.launch(debug=True, share=False)
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
+
from langchain.agents import AgentExecutor, create_react_agent
|
| 6 |
+
from langchain_openai import ChatOpenAI
|
| 7 |
+
from langchain_core.prompts import PromptTemplate
|
| 8 |
+
from langchain_community.tools import DuckDuckGoSearchRun
|
| 9 |
+
from langchain.tools import Tool
|
| 10 |
+
from langchain_community.tools import PythonREPLTool
|
| 11 |
+
import tempfile
|
| 12 |
+
import base64
|
| 13 |
+
from langchain_core.messages import HumanMessage
|
| 14 |
+
|
| 15 |
+
# For PDF and Excel handling - these imports will be used in process_file
|
| 16 |
+
try:
|
| 17 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 18 |
+
import openpyxl # For Excel
|
| 19 |
+
except ImportError:
|
| 20 |
+
pass # Assume installed during HF build
|
| 21 |
|
|
|
|
| 22 |
# --- Constants ---
|
| 23 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 24 |
|
| 25 |
+
# --- Advanced Agent Definition ---
|
| 26 |
+
# ----- THIS IS WHERE THE ADVANCED LOGIC IS BUILT FOR HIGHER SCORES -----
|
| 27 |
class BasicAgent:
|
| 28 |
+
def __init__(self, api_url):
|
| 29 |
+
print("Advanced BasicAgent initialized with tool support.")
|
| 30 |
+
openai_api_key = os.getenv("OPENAI_API_KEY")
|
| 31 |
+
if not openai_api_key:
|
| 32 |
+
raise ValueError("OPENAI_API_KEY must be set in Hugging Face Space variables for the agent to work.")
|
| 33 |
+
|
| 34 |
+
# Use a strong model like gpt-4o for better reasoning and vision
|
| 35 |
+
self.llm = ChatOpenAI(temperature=0, model="gpt-4o", api_key=openai_api_key)
|
| 36 |
+
|
| 37 |
+
# Tools for web search, code execution, and file processing
|
| 38 |
+
self.search_tool = DuckDuckGoSearchRun(name="web_search", description="Search the web for information.")
|
| 39 |
+
self.python_tool = PythonREPLTool(description="Execute Python code for calculations or data processing. Input should be valid Python code.")
|
| 40 |
+
|
| 41 |
+
# Custom tool for processing files (downloads from API, handles images/PDFs/Excel/text)
|
| 42 |
+
self.file_tool = Tool(
|
| 43 |
+
name="process_file",
|
| 44 |
+
func=self._process_file,
|
| 45 |
+
description="Download and process a file associated with a task. Input format: 'task_id: <id>, file_name: <name>'"
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
self.tools = [self.search_tool, self.python_tool, self.file_tool]
|
| 49 |
+
|
| 50 |
+
# React agent prompt template (inspired by GAIA prompting for exact answers)
|
| 51 |
+
self.prompt_template = PromptTemplate.from_template("""
|
| 52 |
+
You are an expert AI agent solving GAIA benchmark questions. These questions require reasoning, tool use, and sometimes file processing.
|
| 53 |
+
|
| 54 |
+
Question: {question}
|
| 55 |
+
|
| 56 |
+
If the question mentions a file or attachment, use the 'process_file' tool with 'task_id: <task_id>, file_name: <file_name>'.
|
| 57 |
+
|
| 58 |
+
Reason step-by-step using tools as needed. Output ONLY the final answer in the exact format required by the question. No explanations, no extra text.
|
| 59 |
+
|
| 60 |
+
{agent_scratchpad}
|
| 61 |
+
""")
|
| 62 |
+
|
| 63 |
+
self.agent = create_react_agent(self.llm, self.tools, self.prompt_template)
|
| 64 |
+
self.executor = AgentExecutor(agent=self.agent, tools=self.tools, verbose=True, handle_parsing_errors=True, max_iterations=10)
|
| 65 |
+
|
| 66 |
+
self.api_url = api_url
|
| 67 |
|
| 68 |
+
def _process_file(self, input_str: str) -> str:
|
| 69 |
+
"""Internal function to download and process files."""
|
| 70 |
+
try:
|
| 71 |
+
# Parse input
|
| 72 |
+
parts = dict(part.strip().split(': ', 1) for part in input_str.split(', '))
|
| 73 |
+
task_id = parts.get('task_id')
|
| 74 |
+
file_name = parts.get('file_name')
|
| 75 |
+
if not task_id or not file_name:
|
| 76 |
+
return "Invalid input for process_file. Need 'task_id' and 'file_name'."
|
| 77 |
+
|
| 78 |
+
# Download file
|
| 79 |
+
file_url = f"{self.api_url}/files/{task_id}"
|
| 80 |
+
response = requests.get(file_url, timeout=10)
|
| 81 |
+
response.raise_for_status()
|
| 82 |
+
|
| 83 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file_name)[1]) as tmp:
|
| 84 |
+
tmp.write(response.content)
|
| 85 |
+
file_path = tmp.name
|
| 86 |
+
|
| 87 |
+
ext = os.path.splitext(file_name)[1].lower()
|
| 88 |
+
|
| 89 |
+
if ext in ['.jpg', '.png', '.jpeg', '.gif']:
|
| 90 |
+
# Use vision to describe image
|
| 91 |
+
with open(file_path, "rb") as img_file:
|
| 92 |
+
base64_image = base64.b64encode(img_file.read()).decode('utf-8')
|
| 93 |
+
message = HumanMessage(content=[
|
| 94 |
+
{"type": "text", "text": "Describe this image in detail, focusing on elements relevant to the question."},
|
| 95 |
+
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
|
| 96 |
+
])
|
| 97 |
+
description = self.llm.invoke([message]).content
|
| 98 |
+
os.unlink(file_path)
|
| 99 |
+
return description
|
| 100 |
+
|
| 101 |
+
elif ext == '.pdf':
|
| 102 |
+
loader = PyPDFLoader(file_path)
|
| 103 |
+
docs = loader.load()
|
| 104 |
+
text = "\n\n".join(doc.page_content for doc in docs)
|
| 105 |
+
os.unlink(file_path)
|
| 106 |
+
return text[:20000] # Truncate if too long
|
| 107 |
+
|
| 108 |
+
elif ext in ['.xlsx', '.xls']:
|
| 109 |
+
import pandas as pd
|
| 110 |
+
df = pd.read_excel(file_path)
|
| 111 |
+
os.unlink(file_path)
|
| 112 |
+
return df.to_string()
|
| 113 |
+
|
| 114 |
+
else:
|
| 115 |
+
# Text file
|
| 116 |
+
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
|
| 117 |
+
text = f.read()
|
| 118 |
+
os.unlink(file_path)
|
| 119 |
+
return text[:20000]
|
| 120 |
+
|
| 121 |
+
except Exception as e:
|
| 122 |
+
return f"Error processing file: {str(e)}"
|
| 123 |
+
|
| 124 |
+
def __call__(self, question: str, task_id: str, file_name: str | None = None) -> str:
|
| 125 |
+
print(f"Agent processing question (first 50 chars): {question[:50]}... (task_id: {task_id}, file: {file_name})")
|
| 126 |
+
input_prompt = question
|
| 127 |
+
if file_name:
|
| 128 |
+
input_prompt += f"\nThere is an attached file '{file_name}'. Use the 'process_file' tool with 'task_id: {task_id}, file_name: {file_name}' to access it."
|
| 129 |
+
|
| 130 |
+
try:
|
| 131 |
+
response = self.executor.invoke({"question": input_prompt})
|
| 132 |
+
answer = response['output'].strip()
|
| 133 |
+
print(f"Agent returning answer: {answer}")
|
| 134 |
+
return answer
|
| 135 |
+
except Exception as e:
|
| 136 |
+
print(f"Error generating answer: {e}")
|
| 137 |
+
return "Agent error occurred."
|
| 138 |
|
| 139 |
+
# Update the run_and_submit_all to pass task_id and file_name to agent
|
| 140 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
| 141 |
+
space_id = os.getenv("SPACE_ID")
|
| 142 |
if profile:
|
| 143 |
+
username = profile.username
|
| 144 |
print(f"User logged in: {username}")
|
| 145 |
else:
|
|
|
|
| 146 |
return "Please Login to Hugging Face with the button.", None
|
| 147 |
+
|
| 148 |
api_url = DEFAULT_API_URL
|
| 149 |
questions_url = f"{api_url}/questions"
|
| 150 |
submit_url = f"{api_url}/submit"
|
| 151 |
+
|
|
|
|
| 152 |
try:
|
| 153 |
+
agent = BasicAgent(api_url)
|
| 154 |
except Exception as e:
|
|
|
|
| 155 |
return f"Error initializing agent: {e}", None
|
| 156 |
+
|
| 157 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 158 |
print(agent_code)
|
| 159 |
+
|
|
|
|
|
|
|
| 160 |
try:
|
| 161 |
response = requests.get(questions_url, timeout=15)
|
| 162 |
response.raise_for_status()
|
| 163 |
questions_data = response.json()
|
|
|
|
|
|
|
|
|
|
| 164 |
print(f"Fetched {len(questions_data)} questions.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
except Exception as e:
|
| 166 |
+
return f"Error fetching questions: {e}", None
|
| 167 |
+
|
|
|
|
|
|
|
| 168 |
results_log = []
|
| 169 |
answers_payload = []
|
|
|
|
| 170 |
for item in questions_data:
|
| 171 |
task_id = item.get("task_id")
|
| 172 |
question_text = item.get("question")
|
| 173 |
+
file_name = item.get("file_name") # Assuming the API provides 'file_name'; if not, check item for attachments
|
| 174 |
+
if not task_id or not question_text:
|
| 175 |
continue
|
| 176 |
try:
|
| 177 |
+
submitted_answer = agent(question_text, task_id, file_name)
|
| 178 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 179 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 180 |
except Exception as e:
|
| 181 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 182 |
+
|
|
|
|
| 183 |
if not answers_payload:
|
|
|
|
| 184 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 185 |
+
|
|
|
|
| 186 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
try:
|
| 188 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
| 189 |
response.raise_for_status()
|
|
|
|
| 195 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 196 |
f"Message: {result_data.get('message', 'No message received.')}"
|
| 197 |
)
|
| 198 |
+
return final_status, pd.DataFrame(results_log)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
except Exception as e:
|
| 200 |
+
return f"Submission Failed: {e}", pd.DataFrame(results_log)
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
+
# --- Gradio Interface ---
|
|
|
|
| 203 |
with gr.Blocks() as demo:
|
| 204 |
+
gr.Markdown("# Advanced Agent Evaluation Runner for GAIA (Aiming for 60%+)")
|
| 205 |
gr.Markdown(
|
| 206 |
"""
|
| 207 |
**Instructions:**
|
| 208 |
+
1. Set OPENAI_API_KEY in Hugging Face Space variables (Settings > Variables).
|
| 209 |
+
2. Log in to Hugging Face.
|
| 210 |
+
3. Click 'Run Evaluation & Submit All Answers'.
|
| 211 |
+
|
| 212 |
+
This agent uses GPT-4o with tools for search, code execution, and file processing (images/PDFs/Excel) to achieve higher scores.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
"""
|
| 214 |
)
|
|
|
|
| 215 |
gr.LoginButton()
|
|
|
|
| 216 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
|
|
|
| 217 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
|
| 218 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 219 |
+
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
demo.launch(debug=True, share=False)
|