File size: 12,505 Bytes
0658ead
6a9603d
663e454
 
 
 
 
 
0658ead
663e454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0658ead
663e454
 
 
 
 
 
0658ead
663e454
 
 
 
0658ead
663e454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0658ead
6a9603d
663e454
 
6a9603d
 
663e454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a9603d
 
0658ead
6a9603d
 
0658ead
6a9603d
663e454
 
 
6a9603d
 
663e454
6a9603d
 
 
663e454
6a9603d
 
 
 
663e454
 
 
 
 
 
 
 
 
 
6a9603d
 
663e454
 
 
6a9603d
 
663e454
 
 
 
 
6a9603d
663e454
 
 
 
 
6a9603d
 
 
 
 
663e454
 
 
 
 
 
 
 
 
 
 
0658ead
663e454
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import gradio as gr
import asyncio
import os
import zipfile
import requests
from pathlib import Path
import numpy as np
from typing import List

# Try different LightRAG imports based on version
try:
    from lightrag import LightRAG, QueryParam
    from lightrag.utils import EmbeddingFunc
    LIGHTRAG_AVAILABLE = True
except ImportError:
    try:
        from lightrag.lightrag import LightRAG
        from lightrag.query import QueryParam
        from lightrag.utils import EmbeddingFunc
        LIGHTRAG_AVAILABLE = True
    except ImportError:
        try:
            from lightrag.core import LightRAG
            from lightrag.core import QueryParam
            from lightrag.utils import EmbeddingFunc
            LIGHTRAG_AVAILABLE = True
        except ImportError:
            print("❌ LightRAG import failed - using fallback mode")
            LIGHTRAG_AVAILABLE = False

# Fallback CloudflareWorker with simple search
class CloudflareWorker:
    def __init__(self, cloudflare_api_key: str, api_base_url: str, llm_model_name: str, embedding_model_name: str):
        self.cloudflare_api_key = cloudflare_api_key
        self.api_base_url = api_base_url
        self.llm_model_name = llm_model_name
        self.embedding_model_name = embedding_model_name
        self.max_tokens = 4080
        self.max_response_tokens = 4080

    async def _send_request(self, model_name: str, input_: dict, debug_log: str = ""):
        headers = {"Authorization": f"Bearer {self.cloudflare_api_key}"}
        
        try:
            response_raw = requests.post(
                f"{self.api_base_url}{model_name}",
                headers=headers,
                json=input_,
                timeout=30
            ).json()
            
            result = response_raw.get("result", {})
            
            if "data" in result:
                return np.array(result["data"]) if LIGHTRAG_AVAILABLE else result["data"]
            if "response" in result:
                return result["response"]
            
            raise ValueError(f"Unexpected response format: {response_raw}")
        
        except Exception as e:
            print(f"Cloudflare API Error: {e}")
            return None

    async def query(self, prompt: str, system_prompt: str = '', **kwargs) -> str:
        kwargs.pop("hashing_kv", None)
        
        message = [
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": prompt}
        ]
        
        input_ = {
            "messages": message,
            "max_tokens": self.max_tokens,
            "response_token_limit": self.max_response_tokens,
        }
        
        result = await self._send_request(self.llm_model_name, input_)
        return result if result is not None else "Error: Failed to get response"

    async def embedding_chunk(self, texts: List[str]):
        input_ = {
            "text": texts,
            "max_tokens": self.max_tokens,
            "response_token_limit": self.max_response_tokens,
        }
        
        result = await self._send_request(self.embedding_model_name, input_)
        
        if result is None:
            if LIGHTRAG_AVAILABLE:
                return np.random.rand(len(texts), 1024).astype(np.float32)
            else:
                return [[0.0] * 1024 for _ in texts]
        
        return result

# Simple fallback knowledge store if LightRAG fails
class SimpleKnowledgeStore:
    def __init__(self, data_dir: str):
        self.data_dir = data_dir
        self.chunks = []
        self.entities = []
        self.load_data()
    
    def load_data(self):
        try:
            import json
            chunks_file = Path(self.data_dir) / "kv_store_text_chunks.json"
            if chunks_file.exists():
                with open(chunks_file, 'r', encoding='utf-8') as f:
                    data = json.load(f)
                    self.chunks = list(data.values()) if data else []
            
            entities_file = Path(self.data_dir) / "vdb_entities.json"
            if entities_file.exists():
                with open(entities_file, 'r', encoding='utf-8') as f:
                    entities_data = json.load(f)
                    if isinstance(entities_data, dict) and 'data' in entities_data:
                        self.entities = entities_data['data']
                    elif isinstance(entities_data, list):
                        self.entities = entities_data
                    else:
                        self.entities = []
                    
            print(f"βœ… Loaded {len(self.chunks)} chunks and {len(self.entities)} entities")
            
        except Exception as e:
            print(f"⚠️ Error loading data: {e}")
            self.chunks = []
            self.entities = []
    
    def search(self, query: str, limit: int = 5) -> List[str]:
        query_lower = query.lower()
        results = []
        
        for chunk in self.chunks:
            if isinstance(chunk, dict) and 'content' in chunk:
                content = chunk['content']
                if any(word in content.lower() for word in query_lower.split()):
                    results.append(content)
        
        for entity in self.entities:
            if isinstance(entity, dict):
                entity_text = str(entity)
                if any(word in entity_text.lower() for word in query_lower.split()):
                    results.append(entity_text)
        
        return results[:limit]

# Configuration
CLOUDFLARE_API_KEY = os.getenv('CLOUDFLARE_API_KEY', 'lMbDDfHi887AK243ZUenm4dHV2nwEx2NSmX6xuq5')
API_BASE_URL = "https://api.cloudflare.com/client/v4/accounts/07c4bcfbc1891c3e528e1c439fee68bd/ai/run/"
EMBEDDING_MODEL = '@cf/baai/bge-m3'
LLM_MODEL = "@cf/meta/llama-3.2-3b-instruct"
WORKING_DIR = "./dickens"

# Global instances
rag_instance = None
knowledge_store = None
cloudflare_worker = None

async def initialize_system():
    global rag_instance, knowledge_store, cloudflare_worker
    
    print("πŸ”„ Initializing system...")
    
    # Download data if needed
    dickens_path = Path(WORKING_DIR)
    has_data = dickens_path.exists() and len(list(dickens_path.glob("*.json"))) > 0
    
    if not has_data:
        print("πŸ“₯ Downloading RAG database...")
        try:
            # REPLACE YOUR_USERNAME with your actual GitHub username
            data_url = "https://github.com/YOUR_USERNAME/fire-safety-ai/releases/download/v1.0-data/dickens.zip"
            
            response = requests.get(data_url, timeout=60)
            response.raise_for_status()
            
            with open("dickens.zip", "wb") as f:
                f.write(response.content)
            
            with zipfile.ZipFile("dickens.zip", 'r') as zip_ref:
                zip_ref.extractall(".")
            
            os.remove("dickens.zip")
            print("βœ… Data downloaded!")
            
        except Exception as e:
            print(f"⚠️ Download failed: {e}")
            os.makedirs(WORKING_DIR, exist_ok=True)
    
    # Initialize Cloudflare worker
    cloudflare_worker = CloudflareWorker(
        cloudflare_api_key=CLOUDFLARE_API_KEY,
        api_base_url=API_BASE_URL,
        embedding_model_name=EMBEDDING_MODEL,
        llm_model_name=LLM_MODEL,
    )
    
    # Try to initialize LightRAG, fallback to simple store
    if LIGHTRAG_AVAILABLE:
        try:
            rag_instance = LightRAG(
                working_dir=WORKING_DIR,
                max_parallel_insert=2,
                llm_model_func=cloudflare_worker.query,
                llm_model_name=LLM_MODEL,
                llm_model_max_token_size=4080,
                embedding_func=EmbeddingFunc(
                    embedding_dim=1024,
                    max_token_size=2048,
                    func=lambda texts: cloudflare_worker.embedding_chunk(texts),
                ),
            )
            
            await rag_instance.initialize_storages()
            print("βœ… LightRAG system initialized!")
            
        except Exception as e:
            print(f"⚠️ LightRAG failed, using fallback: {e}")
            knowledge_store = SimpleKnowledgeStore(WORKING_DIR)
    else:
        print("πŸ”„ Using simple knowledge store...")
        knowledge_store = SimpleKnowledgeStore(WORKING_DIR)
    
    print("βœ… System ready!")

# Initialize on startup
asyncio.run(initialize_system())

async def ask_question(question, mode="hybrid"):
    if not question.strip():
        return "❌ Please enter a question."
    
    try:
        print(f"πŸ” Processing question: {question}")
        
        # Use LightRAG if available, otherwise fallback
        if rag_instance and LIGHTRAG_AVAILABLE:
            response = await rag_instance.aquery(
                question,
                param=QueryParam(mode=mode)
            )
            return response
        
        elif knowledge_store and cloudflare_worker:
            # Fallback: simple search + Cloudflare AI
            relevant_chunks = knowledge_store.search(question, limit=3)
            context = "\n".join(relevant_chunks) if relevant_chunks else "No specific context found."
            
            system_prompt = """You are a Fire Safety AI Assistant specializing in Vietnamese fire safety regulations. 
            Use the provided context to answer questions about building codes, emergency exits, and fire safety requirements."""
            
            user_prompt = f"""Context: {context}

Question: {question}

Please provide a helpful answer based on the context about Vietnamese fire safety regulations."""
            
            response = await cloudflare_worker.query(user_prompt, system_prompt)
            return response
        
        else:
            return "❌ System not initialized yet. Please wait..."
            
    except Exception as e:
        return f"❌ Error: {str(e)}"

def sync_ask_question(question, mode):
    return asyncio.run(ask_question(question, mode))

# Create Gradio interface
with gr.Blocks(title="πŸ”₯ Fire Safety AI Assistant", theme=gr.themes.Soft()) as demo:
    gr.HTML("<h1 style='text-align: center;'>πŸ”₯ Fire Safety AI Assistant</h1>")
    gr.HTML("<p style='text-align: center;'>Ask questions about Vietnamese fire safety regulations</p>")
    
    with gr.Row():
        with gr.Column(scale=1):
            question_input = gr.Textbox(
                label="Your Question",
                placeholder="What are the requirements for emergency exits?",
                lines=3
            )
            mode_dropdown = gr.Dropdown(
                choices=["hybrid", "local", "global", "naive"],
                value="hybrid",
                label="Search Mode",
                info="Hybrid is recommended for best results"
            )
            submit_btn = gr.Button("πŸ” Ask Question", variant="primary", size="lg")
        
        with gr.Column(scale=2):
            answer_output = gr.Textbox(
                label="Answer",
                lines=15,
                show_copy_button=True
            )
    
    # System status
    status_text = "βœ… LightRAG System" if LIGHTRAG_AVAILABLE else "⚠️ Fallback Mode"
    gr.HTML(f"<p style='text-align: center; color: gray;'>Status: {status_text}</p>")
    
    # Example questions
    gr.HTML("<h3 style='text-align: center;'>πŸ’‘ Example Questions:</h3>")
    
    with gr.Row():
        example1 = gr.Button("What are the requirements for emergency exits?", size="sm")
        example2 = gr.Button("How many exits does a building need?", size="sm")
    
    with gr.Row():
        example3 = gr.Button("What are fire safety rules for stairwells?", size="sm")
        example4 = gr.Button("What are building safety requirements?", size="sm")
    
    # Event handlers
    submit_btn.click(
        sync_ask_question,
        inputs=[question_input, mode_dropdown],
        outputs=answer_output
    )
    
    question_input.submit(
        sync_ask_question,
        inputs=[question_input, mode_dropdown],
        outputs=answer_output
    )
    
    example1.click(lambda: "What are the requirements for emergency exits?", outputs=question_input)
    example2.click(lambda: "How many exits does a building need?", outputs=question_input)
    example3.click(lambda: "What are fire safety rules for stairwells?", outputs=question_input)
    example4.click(lambda: "What are building safety requirements?", outputs=question_input)

if __name__ == "__main__":
    demo.launch()