Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| """ | |
| For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
| """ | |
| client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
| def login_screen(): | |
| username = gr.Textbox("Username: ").value | |
| password = gr.Textbox("Password: ", type="password").value | |
| if username == "admin" and password == "pass1234": | |
| return None # Login successful, no output | |
| else: | |
| return "Incorrect credentials. Please try again." | |
| def chat(message): | |
| if not hasattr(chat, 'authorized'): | |
| chat.authorized = None # Flag for login status | |
| if chat.authorized is None: | |
| response = login_screen() | |
| if response is None: | |
| chat.authorized = True | |
| return "Welcome! Ask me anything about Manufacturing" | |
| else: | |
| return response | |
| else: | |
| # Call the actual job description generation function | |
| return generate_job_description(message, max_tokens, temperature, top_p) | |
| def generate_job_description( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| messages = [{"role": "system", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| response = "" | |
| for message in client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| token = message.choices[0].delta.content | |
| response += token | |
| yield response | |
| """ | |
| For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
| """ | |
| demo = gr.ChatInterface( | |
| generate_job_description, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are an expert in mechanical engineering, manufacturing and production", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| title="Manufacturing expert!", | |
| description="This agent answers questions related to manufacturing. Ask specific questions. Happy making things happen. ", | |
| analytics_enabled=True | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |