e-commerce-ai-alchemy-engine / healthcare-api.py
babatdaa's picture
Develop a script in Python to fine-tune a text generation model (e.g., BioGPT) that creates patient education materials or reports, while incorporating a machine learning predictive layer (e.g., using XGBoost) to analyze health data (e.g., electronic records) and predict outcomes like disease progression. Ensure HIPAA compliance in data handling. Provide code for model training, inference, and integration into a web app, optimized for healthcare providers scrambling to integrate AI amid 220% demand growth.
2dcfe74 verified
```python
#!/usr/bin/env python3
"""
Healthcare AI API for Web Integration
FastAPI backend for HIPAA-compliant AI services
"""
from fastapi import FastAPI, HTTPException, Depends, Security
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from pydantic import BaseModel
import uvicorn
from healthcare_ai_finetune import HealthcareAIApp, HIPAACompliantDataHandler
import json
from typing import Optional, List
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize AI system
healthcare_ai = HealthcareAIApp()
healthcare_ai.initialize_models()
app = FastAPI(
title="Healthcare AI API",
description="HIPAA-compliant AI services for patient education and predictive analytics",
version="1.0.0"
)
security = HTTPBearer()
class PatientData(BaseModel):
age: int
bmi: float
blood_pressure_systolic: int
blood_pressure_diastolic: int
gender: str
smoking_status: str
diabetes_status: str
condition: str
symptoms: str
class PredictionRequest(BaseModel):
patient_data: PatientData
model_type: str = "both" # "education", "prediction", or "both"
class HealthPrediction(BaseModel):
risk_level: int
confidence: float
recommendations: List[str]
class EducationMaterial(BaseModel):
content: str
condition: str
generated_at: str
class APIResponse(BaseModel):
success: bool
message: str
data: Optional[dict] = None
def verify_token(credentials: HTTPAuthorizationCredentials = Depends(security)):
"""Simple token verification - enhance for production"""
valid_tokens = ["healthcare_provider_token_2024"]
if credentials.credentials not in valid_tokens:
raise HTTPException(status_code=401, detail="Invalid token")
return credentials.credentials
@app.get("/")
async def root():
return {"message": "Healthcare AI API - HIPAA Compliant"}
@app.post("/api/generate-education", response_model=APIResponse)
async def generate_education_material(
request: PredictionRequest,
token: str = Depends(verify_token)
):
"""Generate patient education materials"""
try:
# Convert patient data to DataFrame format
patient_df = pd.DataFrame([{
'age': request.patient_data.age,
'bmi': request.patient_data.bmi,
'blood_pressure_systolic': request.patient_data.blood_pressure_systolic,
'blood_pressure_diastolic': request.patient_data.blood_pressure_diastolic,
'gender': request.patient_data.gender,
'smoking_status': request.patient_data.smoking_status,
'diabetes_status': request.patient_data.diabetes_status
}])
result = healthcare_ai.process_patient_case(
patient_df,
request.patient_data.condition,
request.patient_data.symptoms
)
return APIResponse(
success=True,
message="Education material generated successfully",
data={
"education_material": result["education_material"],
"condition": request.patient_data.condition
)
except Exception as e:
logger.error(f"Error generating education material: {e}")
raise HTTPException(status_code=500, detail="Internal server error")
@app.post("/api/predict-health", response_model=APIResponse)
async def predict_health_outcomes(
request: PredictionRequest,
token: str = Depends(verify_token)
):
"""Predict health outcomes and risk levels"""
try:
patient_df = pd.DataFrame([{
'age': request.patient_data.age,
'bmi': request.patient_data.bmi,
'blood_pressure_systolic': request.patient_data.blood_pressure_systolic,
'blood_pressure_diastolic': request.patient_data.blood_pressure_diastolic,
'gender': request.patient_data.gender,
'smoking_status': request.patient_data.smoking_status,
'diabetes_status': request.patient_data.diabetes_status
}])
predictions, probabilities = healthcare_ai.health_predictor.predict_health_outcomes(patient_df)
return APIResponse(
success=True,
message="Health prediction completed",
data={
"risk_prediction": int(predictions[0]),
"confidence_score': float(np.max(probabilities[0])),
'recommendations': result["treatment_recommendations"]
)
except Exception as e:
logger.error(f"Error predicting health outcomes: {e}")
raise HTTPException(status_code=500, detail="Internal server error")
@app.post("/api/comprehensive-analysis", response_model=APIResponse)
async def comprehensive_health_analysis(
request: PredictionRequest,
token: str = Depends(verify_token)
):
"""Complete health analysis with education and predictions"""
try:
patient_df = pd.DataFrame([{
'age': request.patient_data.age,
'bmi': request.patient_data.bmi,
'blood_pressure_systolic': request.patient_data.blood_pressure_systolic,
'blood_pressure_diastolic': request.patient_data.blood_pressure_diastolic,
'gender': request.patient_data.gender,
'smoking_status': request.patient_data.smoking_status,
'diabetes_status': request.patient_data.diabetes_status
}])
result = healthcare_ai.process_patient_case(
patient_df,
request.patient_data.condition,
request.patient_data.symptoms
)
return APIResponse(
success=True,
message="Comprehensive health analysis completed",
data=result
)
except Exception as e:
logger.error(f"Error in comprehensive analysis: {e}")
raise HTTPException(status_code=500, detail="Internal server error")
@app.get("/api/health")
async def health_check():
return {"status": "healthy", "service": "healthcare_ai"}
if __name__ == "__main__":
uvicorn.run(
"healthcare_api:app",
host="0.0.0.0",
port=8000,
reload=True
)
```