image-to-relief / app.py
Blair Johnson
default to open body
f78c2b3
import gradio as gr
import torch
import numpy as np
import cv2
from PIL import Image
from transformers import AutoProcessor, AutoModelForDepthEstimation
import tempfile
from stl import mesh
from sklearn.decomposition import PCA
import pillow_heif
pillow_heif.register_heif_opener()
MAX_RESOLUTION = 1.5e6
MODEL_ID = "depth-anything/Depth-Anything-V2-Large-hf"
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = AutoProcessor.from_pretrained(MODEL_ID, use_fast=True)
model = AutoModelForDepthEstimation.from_pretrained(MODEL_ID).to(device)
print("Model loaded successfully.")
def create_3d_model(
input_filepath: str,
texture_strength: float,
max_z: float,
min_z: float,
x_length: float,
do_pca_correction: bool,
depth_map_smoothing: int,
texture_smoothing: int,
close_body: int
):
if input_filepath is None: raise gr.Error("Please upload an image.")
if max_z <= min_z: raise gr.Error("Max Z-height must be greater than Min Z-height.")
try:
image_pil = Image.open(input_filepath)
input_image = np.array(image_pil.convert("RGB"))
except Exception as e:
raise gr.Error(f"Could not open image file. Error: {e}")
# resize large images
h, w, _ = input_image.shape
if h * w > MAX_RESOLUTION:
gr.Info("Image is large, downsampling to improve performance...")
ratio = (MAX_RESOLUTION / (h * w)) ** 0.5
new_w, new_h = int(w * ratio), int(h * ratio)
input_image = cv2.resize(input_image, (new_w, new_h), interpolation=cv2.INTER_AREA)
image = Image.fromarray(input_image).convert("RGB")
with torch.no_grad():
inputs = processor(images=image, return_tensors="pt").to(device)
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
depth = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1), size=(image.height, image.width),
mode="bicubic", align_corners=False,
).squeeze().cpu().numpy()
depth_normalized = (depth - depth.min()) / (depth.max() - depth.min())
# smoothing base depthmap
if depth_map_smoothing > 1:
ksize = int(depth_map_smoothing)
if ksize % 2 == 0: ksize += 1
depth_normalized = cv2.GaussianBlur(depth_normalized, (ksize, ksize), 0)
gray_image = cv2.cvtColor(input_image, cv2.COLOR_RGB2GRAY)
brightness_normalized = gray_image.astype(float) / 255.0
# smoothing brightness
if texture_smoothing > 1:
ksize = int(texture_smoothing)
if ksize % 2 == 0: ksize += 1
brightness_normalized = cv2.GaussianBlur(brightness_normalized, (ksize, ksize), 0)
if brightness_normalized.shape != depth_normalized.shape:
brightness_normalized = cv2.resize(
brightness_normalized, (depth_normalized.shape[1], depth_normalized.shape[0]),
interpolation=cv2.INTER_LINEAR
)
combined_map = depth_normalized + (brightness_normalized * texture_strength)
c_min, c_max = combined_map.min(), combined_map.max()
if c_max > c_min:
combined_map_rescaled = (combined_map - c_min) / (c_max - c_min)
else:
combined_map_rescaled = np.zeros_like(combined_map)
z_data = min_z + combined_map_rescaled * (max_z - min_z)
# Planar correction with PCA
if do_pca_correction:
height, width = z_data.shape
y_length = x_length * (height / width)
x_coords_1d, y_coords_1d = np.linspace(0, x_length, width), np.linspace(y_length, 0, height)
x_grid, y_grid = np.meshgrid(x_coords_1d, y_coords_1d)
points = np.stack([x_grid.flatten(), y_grid.flatten(), z_data.flatten()], axis=1)
n_points, n_samples = points.shape[0], min(points.shape[0], 50000)
sample_indices = np.random.choice(n_points, n_samples, replace=False)
pca = PCA(n_components=3)
pca.fit(points[sample_indices])
normal = pca.components_[2]
if normal[2] < 0:
normal *= -1
p0 = pca.mean_
z_plane = p0[2] - (normal[0] * (x_grid - p0[0]) + normal[1] * (y_grid - p0[1])) / normal[2]
corrected_z = z_data - z_plane
cz_min, cz_max = corrected_z.min(), corrected_z.max()
if cz_max > cz_min:
z_data = min_z + (corrected_z - cz_min) / (cz_max - cz_min) * (max_z - min_z)
# STL mesh
height, width = z_data.shape
y_length = x_length * (height / width)
vertices = np.zeros((height, width, 3))
x_coords, y_coords = np.linspace(0, x_length, width), np.linspace(y_length, 0, height)
vertices[:, :, 0], vertices[:, :, 1], vertices[:, :, 2] = x_coords[np.newaxis, :], y_coords[:, np.newaxis], z_data
faces = []
for i in range(height-1):
for j in range(width-1):
v1,v2,v3,v4 = vertices[i,j], vertices[i+1,j], vertices[i+1,j+1], vertices[i,j+1]
faces.extend([[v1, v2, v3], [v1, v3, v4]])
if close_body:
v_tl, v_tr, v_bl, v_br = vertices[0,0], vertices[0,width-1], vertices[height-1,0], vertices[height-1,width-1]
b_tl,b_tr,b_bl,b_br = np.array([v_tl[0],v_tl[1],0]), np.array([v_tr[0],v_tr[1],0]), np.array([v_bl[0],v_bl[1],0]), np.array([v_br[0],v_br[1],0])
faces.extend([
[v_tl, b_tl, b_tr], [v_tl, b_tr, v_tr], #top wall
[v_br, b_br, b_bl], [v_br, b_bl, v_bl], #bottom wall
[v_bl, b_bl, b_tl], [v_bl, b_tl, v_tl], #left
[v_tr, b_tr, b_br], [v_tr, b_br, v_br], #right
[b_tl, b_br, b_bl], [b_tl, b_tr, b_br] #base
])
surface = mesh.Mesh(np.zeros(len(faces), dtype=mesh.Mesh.dtype))
surface.vectors = np.array(faces)
with tempfile.NamedTemporaryFile(delete=False, suffix=".stl") as tmpfile:
surface.save(tmpfile.name)
return tmpfile.name, tmpfile.name
with gr.Blocks(theme='base') as demo:
gr.Markdown("# Image to 3D Relief Generator")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="filepath", label="Upload Image")
gr.Markdown("### Model Parameters")
texture_strength = gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.001, label="Brightness Texture Strength")
depth_map_smoothing = gr.Slider(minimum=0, maximum=51, value=0, step=1, label="Depth Map Smoothing", info="Smooths the base geometry. 0 = none.")
texture_smoothing = gr.Slider(minimum=0, maximum=51, value=0, step=1, label="Texture Smoothing", info="Smooths the brightness texture. 0 = none.")
x_length = gr.Number(value=100, label="X Length (units)")
min_z = gr.Number(value=0.5, label="Min Z-Height (units)")
max_z = gr.Number(value=5.0, label="Max Z-Height (units)")
do_pca = gr.Checkbox(value=True, label="Enable PCA Planar Correction")
close_body = gr.Checkbox(value=False, label="Close Body")
generate_btn = gr.Button("Generate STL", variant="primary")
with gr.Column(scale=1):
gr.Markdown("### 3D Model Output")
output_model = gr.Model3D(label="Generated 3D Model")
output_file = gr.File(label="Download STL File")
generate_btn.click(
fn=create_3d_model,
inputs=[
input_image, texture_strength, max_z, min_z, x_length, do_pca,
depth_map_smoothing, texture_smoothing, close_body
],
outputs=[output_model, output_file]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)