File size: 11,753 Bytes
b931367
 
74ebe5c
439ab17
 
 
74ebe5c
 
439ab17
b931367
74ebe5c
b931367
63e4846
 
 
b931367
 
 
63e4846
 
b931367
 
 
63e4846
 
 
 
b931367
 
63e4846
b931367
63e4846
 
 
b931367
 
74ebe5c
b931367
74ebe5c
b931367
 
74ebe5c
 
b931367
 
 
 
 
439ab17
 
b931367
 
 
63e4846
b931367
63e4846
 
 
 
 
 
b931367
63e4846
 
b931367
63e4846
b931367
 
 
 
 
74ebe5c
 
 
 
 
 
63e4846
74ebe5c
 
 
 
63e4846
b931367
 
 
 
 
 
 
 
 
74ebe5c
 
b931367
63e4846
b931367
 
 
 
 
 
 
 
 
 
63e4846
 
 
 
 
 
 
439ab17
63e4846
439ab17
 
63e4846
 
 
439ab17
63e4846
439ab17
 
 
 
 
 
 
63e4846
 
 
439ab17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63e4846
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b931367
 
 
63e4846
b931367
 
 
63e4846
b931367
 
 
 
 
 
 
 
 
 
 
439ab17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63e4846
 
74ebe5c
b931367
63e4846
 
 
 
439ab17
63e4846
 
439ab17
 
 
63e4846
 
 
 
439ab17
63e4846
 
 
 
 
 
 
 
 
 
 
 
 
 
439ab17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b931367
74ebe5c
 
 
 
b931367
 
74ebe5c
 
 
63e4846
439ab17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import gradio as gr
import time
from smart_writer_kit.agent_for_streaming_completion import fetch_flow_suggestion_agent, accept_flow_suggestion_agent
from smart_writer_kit.agent_for_inspiration_expansion import fetch_inspiration_agent, apply_inspiration_agent
from smart_writer_kit.agent_for_paragraph_continuation import fetch_paragraph_continuation_agent
from smart_writer_kit.agent_for_prompt_suggestion import fetch_prompt_suggestions_agent
from smart_writer_kit.agent_for_outline_update import update_outline_status_agent
from smart_writer_kit.agent_for_kb_update import suggest_new_kb_terms_agent
from ui_components.debounce_manager import DebounceManager

# --- Mock Data (for UI population only) ---

MOCK_STYLE = """故事:人类逐渐走向消亡时,人形机器人的休闲生活。
风格:自然平淡,文字细腻,描绘未来的荒凉与宁静交织的景象。
主题:探索人类与机器的界限,记忆与身份的意义。
"""

MOCK_KNOWLEDGE_BASE = [
    ["Alpha", "故事的主角,女性人形机器人,外表与人类无异。性格有线"],
    ["横滨", "故事发生的主要城市。由于海平面上升,城市部分地区被淹没,形成独特的水上景观。"]
]

MOCK_SHORT_TERM_OUTLINE = [
    [False, "故事的场景设定:海平面上升后的城市景观。"],
    [False, "介绍主角 Alpha 的日常生活和她与其他机器人的互动。"],
    [False, "Alpha 发现了一张旧照片,勾起了她对过去人类生活的好奇心。"],
    [False, "奶油蛋糕的制作方法。"]
]

## 按日常向动画剧情走向写的长纲要。具体。
MOCK_LONG_TERM_OUTLINE = [
    [False, "介绍故事背景。人类逐渐减少,机器人和人的互动。"],
    [False, "Alpha 决定离开居住地,到东京寻找失散的朋友。"],
    [False, "月亮变成了一个巨大的 Disco 灯球。机器人不受控制地开始跳舞,导致全球范围内的混乱。"],
]

# --- UI Helper Functions ---
def get_stats(text):
    """Calculate word count and read time."""
    if not text:
        return "0 Words | 0 mins"
    words = len(text.split())
    read_time = max(1, words // 200) # Average reading speed
    return f"{words} Words | ~{read_time} mins"

# --- UI Construction ---

def create_smart_writer_tab():
    # Initialize DebounceManager
    debounce_manager = DebounceManager(debounce_time=2.0, tick_time=0.3, loading_text="稍后开始续写")

    with gr.Row(equal_height=False, elem_id="indicator-writing-tab"):
        # --- Left Column: Entity Console ---
        with gr.Column(scale=1) as left_panel:
            
            style_input = gr.Textbox(
                label="整体故事和风格", 
                lines=8, 
                value=MOCK_STYLE,
                interactive=True
            )
            
            with gr.Accordion("写作知识库", open=True):
                
                kb_input = gr.Dataframe(
                    headers=["名称", "说明"],
                    datatype=["str", "str"],
                    value=MOCK_KNOWLEDGE_BASE,
                    interactive=True,
                    wrap=True
                )
                with gr.Row():
                    btn_suggest_kb = gr.Button("🔍 提取新词条", size="sm")
                
                suggested_kb_dataframe = gr.Dataframe(
                    headers=["Term", "Description"],
                    datatype=["str", "str"],
                    visible=False, 
                    interactive=False,
                    label="推荐词条"
                )

            with gr.Accordion("当前章节大纲", open=True):
                
                short_outline_input = gr.Dataframe(
                    headers=["Done", "Task"],
                    datatype=["bool", "str"],
                    value=MOCK_SHORT_TERM_OUTLINE,
                    interactive=True,
                    label="当前章节大纲",
                    col_count=(2, "fixed"),
                )
                with gr.Row():
                    btn_sync_outline = gr.Button("🔄 同步状态", size="sm")

            with gr.Accordion("故事整体大纲", open=False):
                long_outline_input = gr.Dataframe(
                    headers=["Done", "Task"],
                    datatype=["bool", "str"],
                    value=MOCK_LONG_TERM_OUTLINE,
                    interactive=True,
                    label="故事总纲",
                    col_count=(2, "fixed"),
                )

        # --- Right Column: Writing Canvas ---
        with gr.Column(scale=5):
            
            # --- RIBBON AREA (Top of Editor) ---
            with gr.Row(variant="panel", elem_classes=["ribbon-container"]):
                
                # Area 1: Real-time Continuation (Flow)
                with gr.Column(scale=1, min_width=200):

                    flow_suggestion_display = gr.Textbox(
                        show_label=True,
                        label="实时续写建议",
                        placeholder="(等待输入或点击“换一个”...)",
                        lines=3,
                        interactive=False,
                        elem_classes=["flow-suggestion-box"],
                    )

                    btn_accept_flow = gr.Button("采纳续写 (Tab)", size="sm", variant="primary", elem_id='btn-action-accept-flow')
                    btn_change_flow = gr.Button("换一个 (Shift+Tab)", size="sm", elem_id='btn-action-change-flow')

                    # Debounce Progress Indicator (Using Manager)
                    debounce_state, debounce_timer, debounce_progress = debounce_manager.create_ui()
                    debounce_progress.visible = True 

                # Area 2: Paragraph Continuation (Inspiration)
                with gr.Column(scale=1, min_width=200):
                    inspiration_prompt_input = gr.Textbox(
                        label="续写提示",
                        placeholder="例如:写一段关于...的描写",
                        lines=2
                    )
                    
                    prompt_suggestions_dataset = gr.Dataset(
                        label="推荐提示 (点击填入)",
                        components=[gr.Textbox(visible=False)],
                        samples=[["生成建议..."], ["生成建议..."], ["生成建议..."]],
                        type="values"
                    )
                    
                    refresh_suggestions_btn = gr.Button("🎲 换一批建议", size="sm", variant="secondary") # Combined trigger

                    with gr.Row():
                        btn_generate_para = gr.Button("整段续写 (Cmd+Enter)", size="sm", variant="primary", elem_id="btn-action-create-paragraph")
                        btn_change_para = gr.Button("换一个", size="sm")
                        btn_accept_para = gr.Button("采纳", size="sm")

                    para_suggestion_display = gr.Textbox(
                        show_label=False,
                        placeholder="(点击“整段续写”生成内容...)",
                        lines=3,
                        interactive=False
                    )
                
                # Area 3: Adjust/Polish (Placeholder)
                with gr.Column(scale=1, min_width=200):
                    gr.Markdown("#### 🛠️ 调整润色")
                    gr.Markdown("(Coming Soon)")

            # --- TOOLBAR ---
            with gr.Row(elem_classes=["toolbar"]):
                stats_display = gr.Markdown("0 Words | 0 mins")
            
            # --- EDITOR ---
            editor = gr.Textbox(
                label="沉浸写作画布", 
                placeholder="开始你的创作...", 
                lines=25, # Reduced lines slightly to accommodate ribbon
                elem_classes=["writing-editor"],
                elem_id="writing-editor",
                show_label=False,
            )


    # --- Interactions ---

    # 1. Stats
    editor.change(fn=get_stats, inputs=editor, outputs=stats_display)

    # 2. Flow Suggestion Logic (Using DebounceManager)
    
    # Bind reset logic to editor change
    editor.change(
        fn=debounce_manager.reset, 
        inputs=[editor, style_input, kb_input, short_outline_input, long_outline_input], # Capture all context as payload
        outputs=[debounce_state, debounce_timer, debounce_progress]
    )

    # Bind tick logic
    def flow_suggestion_trigger(editor_content, style, kb, short_outline, long_outline):
         return fetch_flow_suggestion_agent(editor_content, style, kb, short_outline, long_outline)

    # Note: debounce_manager.tick calls the trigger function. 
    # The lambda is used to pass the specific trigger function for this tab.
    debounce_timer.tick(
        fn=lambda s: debounce_manager.tick(s, flow_suggestion_trigger), 
        inputs=[debounce_state], 
        outputs=[debounce_progress, debounce_state, debounce_timer, flow_suggestion_display]
    )
    
    btn_change_flow.click(fn=fetch_flow_suggestion_agent, inputs=[editor, style_input, kb_input, short_outline_input, long_outline_input], outputs=flow_suggestion_display)

    accept_flow_fn_inputs = [editor, flow_suggestion_display]
    # accept_flow_suggestion_agent returns modified editor text
    btn_accept_flow.click(
        fn=lambda e, s: (accept_flow_suggestion_agent(e, s), ""), # Accept and clear suggestion
        inputs=accept_flow_fn_inputs, 
        outputs=[editor, flow_suggestion_display]
    )

    # 3. Paragraph Continuation Logic (Updated with prompt input)
    def generate_paragraph_wrapper(prompt_val, editor_val, style, kb, short, long_):
        return fetch_paragraph_continuation_agent(prompt_val, editor_val, style, kb, short, long_)

    for btn in [btn_generate_para, btn_change_para]:
        btn.click(
            fn=generate_paragraph_wrapper,
            inputs=[inspiration_prompt_input, editor, style_input, kb_input, short_outline_input, long_outline_input],
            outputs=[para_suggestion_display]
        )
    
    def accept_para_wrapper(curr, new):
        # Reuse apply_inspiration_agent but extract text. 
        # It returns (new_text, modal_update, empty_string)
        res = apply_inspiration_agent(curr, new)
        return res[0], ""

    btn_accept_para.click(
        fn=accept_para_wrapper,
        inputs=[editor, para_suggestion_display],
        outputs=[editor, para_suggestion_display]
    )
    
    # Suggestions Logic
    # Trigger for suggestion generation
    def refresh_suggestions_wrapper(editor_content, style, kb, short_outline, long_outline):
        s1, s2, s3 = fetch_prompt_suggestions_agent(editor_content, style, kb, short_outline, long_outline)
        # Return a gr.update object to properly update the Dataset component
        return gr.update(samples=[[s1], [s2], [s3]])

    refresh_suggestions_btn.click(
        fn=refresh_suggestions_wrapper,
        inputs=[editor, style_input, kb_input, short_outline_input, long_outline_input],
        outputs=[prompt_suggestions_dataset]
    )
    
    # Dataset click -> fill prompt input
    def fill_prompt_from_dataset(val):
        return val[0]

    prompt_suggestions_dataset.click(
        fn=fill_prompt_from_dataset,
        inputs=prompt_suggestions_dataset,
        outputs=inspiration_prompt_input
    )

    # 4. Agent-based Context Updates
    btn_sync_outline.click(
        fn=update_outline_status_agent,
        inputs=[short_outline_input, editor],
        outputs=[short_outline_input]
    )
    btn_suggest_kb.click(
        fn=suggest_new_kb_terms_agent,
        inputs=[kb_input, editor],
        outputs=[suggested_kb_dataframe]
    )