File size: 17,254 Bytes
b931367
74ebe5c
439ab17
 
 
74ebe5c
 
439ab17
c383152
b931367
74ebe5c
b931367
63e4846
 
 
b931367
 
 
c383152
63e4846
b931367
 
 
63e4846
 
 
 
b931367
 
63e4846
b931367
63e4846
 
 
b931367
 
74ebe5c
c383152
74ebe5c
b931367
c383152
74ebe5c
 
c383152
 
 
b931367
 
 
7519849
 
6d00bb0
b931367
 
 
63e4846
b931367
63e4846
7519849
63e4846
 
 
 
b931367
c383152
7519849
c383152
b931367
7519849
b931367
 
 
 
 
74ebe5c
7519849
74ebe5c
 
 
 
63e4846
74ebe5c
7519849
74ebe5c
 
7519849
b931367
 
7519849
b931367
 
 
c383152
b931367
 
74ebe5c
7519849
b931367
7519849
b931367
7519849
b931367
 
 
c383152
b931367
 
 
 
63e4846
 
 
 
 
 
 
439ab17
63e4846
439ab17
7519849
 
63e4846
 
439ab17
63e4846
439ab17
7519849
 
439ab17
 
 
c383152
63e4846
 
 
439ab17
7519849
 
439ab17
 
 
7519849
439ab17
 
 
 
c383152
7519849
c383152
 
 
63e4846
7519849
 
 
63e4846
 
 
7519849
63e4846
 
 
 
 
 
7519849
 
63e4846
 
b931367
c383152
7519849
c383152
b931367
7519849
 
63e4846
b931367
 
 
 
 
 
 
 
 
7519849
b931367
439ab17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63e4846
 
74ebe5c
b931367
63e4846
 
 
 
439ab17
63e4846
 
439ab17
 
 
63e4846
 
 
 
439ab17
63e4846
 
 
 
 
 
 
 
 
 
 
 
 
 
439ab17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b931367
74ebe5c
 
 
 
b931367
 
74ebe5c
 
 
63e4846
c383152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import gradio as gr
from smart_writer_kit.agent_for_streaming_completion import fetch_flow_suggestion_agent, accept_flow_suggestion_agent
from smart_writer_kit.agent_for_inspiration_expansion import fetch_inspiration_agent, apply_inspiration_agent
from smart_writer_kit.agent_for_paragraph_continuation import fetch_paragraph_continuation_agent
from smart_writer_kit.agent_for_prompt_suggestion import fetch_prompt_suggestions_agent
from smart_writer_kit.agent_for_outline_update import update_outline_status_agent
from smart_writer_kit.agent_for_kb_update import suggest_new_kb_terms_agent
from ui_components.debounce_manager import DebounceManager
from i18n import get_text

# --- Mock Data (for UI population only) ---

MOCK_STYLE = """故事:人类逐渐走向消亡时,人形机器人的休闲生活。
风格:自然平淡,文字细腻,描绘未来的荒凉与宁静交织的景象。
主题:探索人类与机器的界限,记忆与身份的意义。
"""

MOCK_KNOWLEDGE_BASE = [
    ["Alpha", "故事的主角,女性人形机器人,外表与人类无异。性格悠闲"],
    ["横滨", "故事发生的主要城市。由于海平面上升,城市部分地区被淹没,形成独特的水上景观。"]
]

MOCK_SHORT_TERM_OUTLINE = [
    [False, "故事的场景设定:海平面上升后的城市景观。"],
    [False, "介绍主角 Alpha 的日常生活和她与其他机器人的互动。"],
    [False, "Alpha 发现了一张旧照片,勾起了她对过去人类生活的好奇心。"],
    [False, "奶油蛋糕的制作方法。"]
]

## 按日常向动画剧情走向写的长纲要。具体。
MOCK_LONG_TERM_OUTLINE = [
    [False, "介绍故事背景。人类逐渐减少,机器人和人的互动。"],
    [False, "Alpha 决定离开居住地,到东京寻找失散的朋友。"],
    [False, "月亮变成了一个巨大的 Disco 灯球。机器人不受控制地开始跳舞,导致全球范围内的混乱。"],
]

# --- UI Helper Functions ---
def get_stats(text, lang):
    """Calculate word count and read time."""
    if not text:
        return get_text("writer_stats_default", lang)
    words = len(text.split())
    read_time = max(1, words // 200) # Average reading speed
    return get_text("writer_stats_format", lang).format(
        words=words, read_time=read_time
    )

# --- UI Construction ---

def create_smart_writer_tab(lang_state: gr.State):
    lang = lang_state.value
    debounce_manager = DebounceManager(debounce_time=2.0, tick_time=1.0, loading_text=get_text("writer_debounce_loading_text", lang))

    with gr.Row(equal_height=False, elem_id="indicator-writing-tab"):
        # --- Left Column: Entity Console ---
        with gr.Column(scale=1) as left_panel:
            
            style_input = gr.Textbox(
                label=get_text("writer_style_input_label", lang),
                lines=8, 
                value=MOCK_STYLE,
                interactive=True
            )
            
            with gr.Accordion(
                get_text("writer_kb_accordion_label", lang), open=True
            ) as kb_accordion:
                kb_input = gr.Dataframe(
                    headers=[get_text("writer_kb_dataframe_headers", lang), '?'],
                    datatype=["str", "str"],
                    value=MOCK_KNOWLEDGE_BASE,
                    interactive=True,
                    wrap=True
                )
                with gr.Row():
                    btn_suggest_kb = gr.Button(get_text("writer_suggest_kb_button", lang), size="sm")
                
                suggested_kb_dataframe = gr.Dataframe(
                    headers=["Term", "Description"],
                    datatype=["str", "str"],
                    visible=False, 
                    interactive=False,
                    label=get_text("writer_suggested_kb_label", lang),
                )

            with gr.Accordion(get_text("writer_short_outline_accordion_label", lang), open=True) as short_outline_accordion:
                
                short_outline_input = gr.Dataframe(
                    headers=[get_text("writer_short_outline_dataframe_headers", lang), '?'],
                    datatype=["bool", "str"],
                    value=MOCK_SHORT_TERM_OUTLINE,
                    interactive=True,
                    label="???",
                    col_count=(2, "fixed"),
                )
                with gr.Row():
                    btn_sync_outline = gr.Button(get_text("writer_sync_outline_button", lang), size="sm")

            with gr.Accordion(get_text("writer_long_outline_accordion_label", lang), open=False) as long_outline_accordion:
                long_outline_input = gr.Dataframe(
                    headers=[get_text("writer_short_outline_dataframe_headers", lang), '?'],
                    datatype=["bool", "str"],
                    value=MOCK_LONG_TERM_OUTLINE,
                    interactive=True,
                    label="???",
                    col_count=(2, "fixed"),
                )

        # --- Right Column: Writing Canvas ---
        with gr.Column(scale=5):
            
            # --- RIBBON AREA (Top of Editor) ---
            with gr.Row(variant="panel", elem_classes=["ribbon-container"]):
                
                # Area 1: Real-time Continuation (Flow)
                with gr.Column(scale=1, min_width=200):

                    flow_suggestion_display = gr.Textbox(
                        show_label=True,
                        label=get_text("writer_flow_suggestion_label", lang),
                        placeholder=get_text("writer_flow_suggestion_placeholder", lang),
                        lines=3,
                        interactive=False,
                        elem_classes=["flow-suggestion-box"],
                    )

                    btn_accept_flow = gr.Button(get_text("writer_accept_flow_button", lang),size="sm",variant="primary",elem_id="btn-action-accept-flow")
                    btn_change_flow = gr.Button(get_text("writer_change_flow_button", lang),size="sm",elem_id="btn-action-change-flow")

                    # Debounce Progress Indicator (Using Manager)
                    debounce_state, debounce_timer, debounce_progress = debounce_manager.create_ui()
                    debounce_progress.visible = True

                # Area 2: Paragraph Continuation (Inspiration)
                with gr.Column(scale=1, min_width=200):
                    inspiration_prompt_input = gr.Textbox(
                        label=get_text("writer_inspiration_prompt_label", lang),
                        placeholder=get_text("writer_inspiration_prompt_placeholder", lang),
                        lines=2
                    )
                    prompt_suggestions_dataset = gr.Dataset(
                        label=get_text("writer_prompt_suggestions_label", lang),
                        components=[gr.Textbox(visible=False)],
                        samples=[["生成建议..."], ["生成建议..."], ["生成建议..."]],
                        type="values"
                    )
                    refresh_suggestions_btn = gr.Button(
                        get_text("writer_refresh_suggestions_button", lang),
                        size="sm",
                        variant="secondary",
                    )
                    with gr.Row():
                        btn_generate_para = gr.Button(get_text("writer_generate_para_button", lang),size="sm",variant="primary",elem_id="btn-action-create-paragraph")
                        btn_change_para = gr.Button(get_text("writer_change_para_button", lang),size="sm")
                        btn_accept_para = gr.Button(get_text("writer_accept_para_button", lang),size="sm")

                    para_suggestion_display = gr.Textbox(
                        show_label=False,
                        placeholder=get_text("writer_para_suggestion_placeholder", lang),
                        lines=3,
                        interactive=False
                    )
                
                # Area 3: Adjust/Polish (Placeholder)
                with gr.Column(scale=1, min_width=200):
                    polish_title = gr.Markdown(get_text("writer_polish_title", lang))
                    polish_soon = gr.Markdown(get_text("writer_coming_soon", lang))

            # --- TOOLBAR ---
            with gr.Row(elem_classes=["toolbar"]):
                # --- EDITOR ---
                stats_display = gr.Markdown(get_text("writer_stats_default", lang))

            editor = gr.Textbox(
                label=get_text("writer_editor_label", lang),
                placeholder=get_text("writer_editor_placeholder", lang),
                lines=25, # Reduced lines slightly to accommodate ribbon
                elem_classes=["writing-editor"],
                elem_id="writing-editor",
                show_label=False,
            )


    # --- Interactions ---

    # 1. Stats
    editor.change(fn=get_stats, inputs=[editor, lang_state], outputs=stats_display)

    # 2. Flow Suggestion Logic (Using DebounceManager)
    
    # Bind reset logic to editor change
    editor.change(
        fn=debounce_manager.reset, 
        inputs=[editor, style_input, kb_input, short_outline_input, long_outline_input], # Capture all context as payload
        outputs=[debounce_state, debounce_timer, debounce_progress]
    )

    # Bind tick logic
    def flow_suggestion_trigger(editor_content, style, kb, short_outline, long_outline):
         return fetch_flow_suggestion_agent(editor_content, style, kb, short_outline, long_outline)

    # Note: debounce_manager.tick calls the trigger function. 
    # The lambda is used to pass the specific trigger function for this tab.
    debounce_timer.tick(
        fn=lambda s: debounce_manager.tick(s, flow_suggestion_trigger), 
        inputs=[debounce_state], 
        outputs=[debounce_progress, debounce_state, debounce_timer, flow_suggestion_display]
    )
    
    btn_change_flow.click(fn=fetch_flow_suggestion_agent, inputs=[editor, style_input, kb_input, short_outline_input, long_outline_input], outputs=flow_suggestion_display)

    accept_flow_fn_inputs = [editor, flow_suggestion_display]
    # accept_flow_suggestion_agent returns modified editor text
    btn_accept_flow.click(
        fn=lambda e, s: (accept_flow_suggestion_agent(e, s), ""), # Accept and clear suggestion
        inputs=accept_flow_fn_inputs, 
        outputs=[editor, flow_suggestion_display]
    )

    # 3. Paragraph Continuation Logic (Updated with prompt input)
    def generate_paragraph_wrapper(prompt_val, editor_val, style, kb, short, long_):
        return fetch_paragraph_continuation_agent(prompt_val, editor_val, style, kb, short, long_)

    for btn in [btn_generate_para, btn_change_para]:
        btn.click(
            fn=generate_paragraph_wrapper,
            inputs=[inspiration_prompt_input, editor, style_input, kb_input, short_outline_input, long_outline_input],
            outputs=[para_suggestion_display]
        )
    
    def accept_para_wrapper(curr, new):
        # Reuse apply_inspiration_agent but extract text. 
        # It returns (new_text, modal_update, empty_string)
        res = apply_inspiration_agent(curr, new)
        return res[0], ""

    btn_accept_para.click(
        fn=accept_para_wrapper,
        inputs=[editor, para_suggestion_display],
        outputs=[editor, para_suggestion_display]
    )
    
    # Suggestions Logic
    # Trigger for suggestion generation
    def refresh_suggestions_wrapper(editor_content, style, kb, short_outline, long_outline):
        s1, s2, s3 = fetch_prompt_suggestions_agent(editor_content, style, kb, short_outline, long_outline)
        # Return a gr.update object to properly update the Dataset component
        return gr.update(samples=[[s1], [s2], [s3]])

    refresh_suggestions_btn.click(
        fn=refresh_suggestions_wrapper,
        inputs=[editor, style_input, kb_input, short_outline_input, long_outline_input],
        outputs=[prompt_suggestions_dataset]
    )
    
    # Dataset click -> fill prompt input
    def fill_prompt_from_dataset(val):
        return val[0]

    prompt_suggestions_dataset.click(
        fn=fill_prompt_from_dataset,
        inputs=prompt_suggestions_dataset,
        outputs=inspiration_prompt_input
    )

    # 4. Agent-based Context Updates
    btn_sync_outline.click(
        fn=update_outline_status_agent,
        inputs=[short_outline_input, editor],
        outputs=[short_outline_input]
    )
    btn_suggest_kb.click(
        fn=suggest_new_kb_terms_agent,
        inputs=[kb_input, editor],
        outputs=[suggested_kb_dataframe]
    )

    return {
        "style_input": style_input,
        "kb_accordion": kb_accordion,
        "kb_input": kb_input,
        "btn_suggest_kb": btn_suggest_kb,
        "suggested_kb_dataframe": suggested_kb_dataframe,
        "short_outline_accordion": short_outline_accordion,
        "short_outline_input": short_outline_input,
        "btn_sync_outline": btn_sync_outline,
        "long_outline_accordion": long_outline_accordion,
        "long_outline_input": long_outline_input,
        "flow_suggestion_display": flow_suggestion_display,
        "btn_accept_flow": btn_accept_flow,
        "btn_change_flow": btn_change_flow,
        "inspiration_prompt_input": inspiration_prompt_input,
        "prompt_suggestions_dataset": prompt_suggestions_dataset,
        "refresh_suggestions_btn": refresh_suggestions_btn,
        "btn_generate_para": btn_generate_para,
        "btn_change_para": btn_change_para,
        "btn_accept_para": btn_accept_para,
        "para_suggestion_display": para_suggestion_display,
        "polish_title": polish_title,
        "polish_soon": polish_soon,
        "stats_display": stats_display,
        "editor": editor,
    }


def update_language(lang: str, components: dict):
    return {
        components["style_input"]: gr.update(
            label=get_text("writer_style_input_label", lang)
        ),
        components["kb_accordion"]: gr.update(
            label=get_text("writer_kb_accordion_label", lang)
        ),
        components["kb_input"]: gr.update(
            headers=get_text("writer_kb_dataframe_headers", lang)
        ),
        components["btn_suggest_kb"]: gr.update(
            value=get_text("writer_suggest_kb_button", lang)
        ),
        components["suggested_kb_dataframe"]: gr.update(
            label=get_text("writer_suggested_kb_label", lang)
        ),
        components["short_outline_accordion"]: gr.update(
            label=get_text("writer_short_outline_accordion_label", lang)
        ),
        components["short_outline_input"]: gr.update(
            headers=get_text("writer_short_outline_dataframe_headers", lang)
        ),
        components["btn_sync_outline"]: gr.update(
            value=get_text("writer_sync_outline_button", lang)
        ),
        components["long_outline_accordion"]: gr.update(
            label=get_text("writer_long_outline_accordion_label", lang)
        ),
        components["long_outline_input"]: gr.update(
            headers=get_text("writer_short_outline_dataframe_headers", lang)
        ),  # Assuming same headers
        components["flow_suggestion_display"]: gr.update(
            label=get_text("writer_flow_suggestion_label", lang),
            placeholder=get_text("writer_flow_suggestion_placeholder", lang),
        ),
        components["btn_accept_flow"]: gr.update(
            value=get_text("writer_accept_flow_button", lang)
        ),
        components["btn_change_flow"]: gr.update(
            value=get_text("writer_change_flow_button", lang)
        ),
        components["inspiration_prompt_input"]: gr.update(
            label=get_text("writer_inspiration_prompt_label", lang),
            placeholder=get_text("writer_inspiration_prompt_placeholder", lang),
        ),
        components["prompt_suggestions_dataset"]: gr.update(
            label=get_text("writer_prompt_suggestions_label", lang)
        ),
        components["refresh_suggestions_btn"]: gr.update(
            value=get_text("writer_refresh_suggestions_button", lang)
        ),
        components["btn_generate_para"]: gr.update(
            value=get_text("writer_generate_para_button", lang)
        ),
        components["btn_change_para"]: gr.update(
            value=get_text("writer_change_para_button", lang)
        ),
        components["btn_accept_para"]: gr.update(
            value=get_text("writer_accept_para_button", lang)
        ),
        components["para_suggestion_display"]: gr.update(
            placeholder=get_text("writer_para_suggestion_placeholder", lang)
        ),
        components["polish_title"]: gr.update(
            value=get_text("writer_polish_title", lang)
        ),
        components["polish_soon"]: gr.update(
            value=get_text("writer_coming_soon", lang)
        ),
        components["editor"]: gr.update(
            label=get_text("writer_editor_label", lang),
            placeholder=get_text("writer_editor_placeholder", lang),
        ),
        components["stats_display"]: gr.update(
            value=get_text("writer_stats_default", lang)
        ),  # Reset stats on lang change
    }