ling-series-spaces / tab_smart_writer.py
GitHub Action
Sync ling-space changes from GitHub commit d5d4701
439ab17
raw
history blame
11.8 kB
import gradio as gr
import time
from smart_writer_kit.agent_for_streaming_completion import fetch_flow_suggestion_agent, accept_flow_suggestion_agent
from smart_writer_kit.agent_for_inspiration_expansion import fetch_inspiration_agent, apply_inspiration_agent
from smart_writer_kit.agent_for_paragraph_continuation import fetch_paragraph_continuation_agent
from smart_writer_kit.agent_for_prompt_suggestion import fetch_prompt_suggestions_agent
from smart_writer_kit.agent_for_outline_update import update_outline_status_agent
from smart_writer_kit.agent_for_kb_update import suggest_new_kb_terms_agent
from ui_components.debounce_manager import DebounceManager
# --- Mock Data (for UI population only) ---
MOCK_STYLE = """故事:人类逐渐走向消亡时,人形机器人的休闲生活。
风格:自然平淡,文字细腻,描绘未来的荒凉与宁静交织的景象。
主题:探索人类与机器的界限,记忆与身份的意义。
"""
MOCK_KNOWLEDGE_BASE = [
["Alpha", "故事的主角,女性人形机器人,外表与人类无异。性格有线"],
["横滨", "故事发生的主要城市。由于海平面上升,城市部分地区被淹没,形成独特的水上景观。"]
]
MOCK_SHORT_TERM_OUTLINE = [
[False, "故事的场景设定:海平面上升后的城市景观。"],
[False, "介绍主角 Alpha 的日常生活和她与其他机器人的互动。"],
[False, "Alpha 发现了一张旧照片,勾起了她对过去人类生活的好奇心。"],
[False, "奶油蛋糕的制作方法。"]
]
## 按日常向动画剧情走向写的长纲要。具体。
MOCK_LONG_TERM_OUTLINE = [
[False, "介绍故事背景。人类逐渐减少,机器人和人的互动。"],
[False, "Alpha 决定离开居住地,到东京寻找失散的朋友。"],
[False, "月亮变成了一个巨大的 Disco 灯球。机器人不受控制地开始跳舞,导致全球范围内的混乱。"],
]
# --- UI Helper Functions ---
def get_stats(text):
"""Calculate word count and read time."""
if not text:
return "0 Words | 0 mins"
words = len(text.split())
read_time = max(1, words // 200) # Average reading speed
return f"{words} Words | ~{read_time} mins"
# --- UI Construction ---
def create_smart_writer_tab():
# Initialize DebounceManager
debounce_manager = DebounceManager(debounce_time=2.0, tick_time=0.3, loading_text="稍后开始续写")
with gr.Row(equal_height=False, elem_id="indicator-writing-tab"):
# --- Left Column: Entity Console ---
with gr.Column(scale=1) as left_panel:
style_input = gr.Textbox(
label="整体故事和风格",
lines=8,
value=MOCK_STYLE,
interactive=True
)
with gr.Accordion("写作知识库", open=True):
kb_input = gr.Dataframe(
headers=["名称", "说明"],
datatype=["str", "str"],
value=MOCK_KNOWLEDGE_BASE,
interactive=True,
wrap=True
)
with gr.Row():
btn_suggest_kb = gr.Button("🔍 提取新词条", size="sm")
suggested_kb_dataframe = gr.Dataframe(
headers=["Term", "Description"],
datatype=["str", "str"],
visible=False,
interactive=False,
label="推荐词条"
)
with gr.Accordion("当前章节大纲", open=True):
short_outline_input = gr.Dataframe(
headers=["Done", "Task"],
datatype=["bool", "str"],
value=MOCK_SHORT_TERM_OUTLINE,
interactive=True,
label="当前章节大纲",
col_count=(2, "fixed"),
)
with gr.Row():
btn_sync_outline = gr.Button("🔄 同步状态", size="sm")
with gr.Accordion("故事整体大纲", open=False):
long_outline_input = gr.Dataframe(
headers=["Done", "Task"],
datatype=["bool", "str"],
value=MOCK_LONG_TERM_OUTLINE,
interactive=True,
label="故事总纲",
col_count=(2, "fixed"),
)
# --- Right Column: Writing Canvas ---
with gr.Column(scale=5):
# --- RIBBON AREA (Top of Editor) ---
with gr.Row(variant="panel", elem_classes=["ribbon-container"]):
# Area 1: Real-time Continuation (Flow)
with gr.Column(scale=1, min_width=200):
flow_suggestion_display = gr.Textbox(
show_label=True,
label="实时续写建议",
placeholder="(等待输入或点击“换一个”...)",
lines=3,
interactive=False,
elem_classes=["flow-suggestion-box"],
)
btn_accept_flow = gr.Button("采纳续写 (Tab)", size="sm", variant="primary", elem_id='btn-action-accept-flow')
btn_change_flow = gr.Button("换一个 (Shift+Tab)", size="sm", elem_id='btn-action-change-flow')
# Debounce Progress Indicator (Using Manager)
debounce_state, debounce_timer, debounce_progress = debounce_manager.create_ui()
debounce_progress.visible = True
# Area 2: Paragraph Continuation (Inspiration)
with gr.Column(scale=1, min_width=200):
inspiration_prompt_input = gr.Textbox(
label="续写提示",
placeholder="例如:写一段关于...的描写",
lines=2
)
prompt_suggestions_dataset = gr.Dataset(
label="推荐提示 (点击填入)",
components=[gr.Textbox(visible=False)],
samples=[["生成建议..."], ["生成建议..."], ["生成建议..."]],
type="values"
)
refresh_suggestions_btn = gr.Button("🎲 换一批建议", size="sm", variant="secondary") # Combined trigger
with gr.Row():
btn_generate_para = gr.Button("整段续写 (Cmd+Enter)", size="sm", variant="primary", elem_id="btn-action-create-paragraph")
btn_change_para = gr.Button("换一个", size="sm")
btn_accept_para = gr.Button("采纳", size="sm")
para_suggestion_display = gr.Textbox(
show_label=False,
placeholder="(点击“整段续写”生成内容...)",
lines=3,
interactive=False
)
# Area 3: Adjust/Polish (Placeholder)
with gr.Column(scale=1, min_width=200):
gr.Markdown("#### 🛠️ 调整润色")
gr.Markdown("(Coming Soon)")
# --- TOOLBAR ---
with gr.Row(elem_classes=["toolbar"]):
stats_display = gr.Markdown("0 Words | 0 mins")
# --- EDITOR ---
editor = gr.Textbox(
label="沉浸写作画布",
placeholder="开始你的创作...",
lines=25, # Reduced lines slightly to accommodate ribbon
elem_classes=["writing-editor"],
elem_id="writing-editor",
show_label=False,
)
# --- Interactions ---
# 1. Stats
editor.change(fn=get_stats, inputs=editor, outputs=stats_display)
# 2. Flow Suggestion Logic (Using DebounceManager)
# Bind reset logic to editor change
editor.change(
fn=debounce_manager.reset,
inputs=[editor, style_input, kb_input, short_outline_input, long_outline_input], # Capture all context as payload
outputs=[debounce_state, debounce_timer, debounce_progress]
)
# Bind tick logic
def flow_suggestion_trigger(editor_content, style, kb, short_outline, long_outline):
return fetch_flow_suggestion_agent(editor_content, style, kb, short_outline, long_outline)
# Note: debounce_manager.tick calls the trigger function.
# The lambda is used to pass the specific trigger function for this tab.
debounce_timer.tick(
fn=lambda s: debounce_manager.tick(s, flow_suggestion_trigger),
inputs=[debounce_state],
outputs=[debounce_progress, debounce_state, debounce_timer, flow_suggestion_display]
)
btn_change_flow.click(fn=fetch_flow_suggestion_agent, inputs=[editor, style_input, kb_input, short_outline_input, long_outline_input], outputs=flow_suggestion_display)
accept_flow_fn_inputs = [editor, flow_suggestion_display]
# accept_flow_suggestion_agent returns modified editor text
btn_accept_flow.click(
fn=lambda e, s: (accept_flow_suggestion_agent(e, s), ""), # Accept and clear suggestion
inputs=accept_flow_fn_inputs,
outputs=[editor, flow_suggestion_display]
)
# 3. Paragraph Continuation Logic (Updated with prompt input)
def generate_paragraph_wrapper(prompt_val, editor_val, style, kb, short, long_):
return fetch_paragraph_continuation_agent(prompt_val, editor_val, style, kb, short, long_)
for btn in [btn_generate_para, btn_change_para]:
btn.click(
fn=generate_paragraph_wrapper,
inputs=[inspiration_prompt_input, editor, style_input, kb_input, short_outline_input, long_outline_input],
outputs=[para_suggestion_display]
)
def accept_para_wrapper(curr, new):
# Reuse apply_inspiration_agent but extract text.
# It returns (new_text, modal_update, empty_string)
res = apply_inspiration_agent(curr, new)
return res[0], ""
btn_accept_para.click(
fn=accept_para_wrapper,
inputs=[editor, para_suggestion_display],
outputs=[editor, para_suggestion_display]
)
# Suggestions Logic
# Trigger for suggestion generation
def refresh_suggestions_wrapper(editor_content, style, kb, short_outline, long_outline):
s1, s2, s3 = fetch_prompt_suggestions_agent(editor_content, style, kb, short_outline, long_outline)
# Return a gr.update object to properly update the Dataset component
return gr.update(samples=[[s1], [s2], [s3]])
refresh_suggestions_btn.click(
fn=refresh_suggestions_wrapper,
inputs=[editor, style_input, kb_input, short_outline_input, long_outline_input],
outputs=[prompt_suggestions_dataset]
)
# Dataset click -> fill prompt input
def fill_prompt_from_dataset(val):
return val[0]
prompt_suggestions_dataset.click(
fn=fill_prompt_from_dataset,
inputs=prompt_suggestions_dataset,
outputs=inspiration_prompt_input
)
# 4. Agent-based Context Updates
btn_sync_outline.click(
fn=update_outline_status_agent,
inputs=[short_outline_input, editor],
outputs=[short_outline_input]
)
btn_suggest_kb.click(
fn=suggest_new_kb_terms_agent,
inputs=[kb_input, editor],
outputs=[suggested_kb_dataframe]
)