Spaces:
Running
Running
| import gradio as gr | |
| import time | |
| from smart_writer_kit.agent_for_streaming_completion import fetch_flow_suggestion_agent, accept_flow_suggestion_agent | |
| from smart_writer_kit.agent_for_inspiration_expansion import fetch_inspiration_agent, apply_inspiration_agent | |
| from smart_writer_kit.agent_for_paragraph_continuation import fetch_paragraph_continuation_agent | |
| from smart_writer_kit.agent_for_prompt_suggestion import fetch_prompt_suggestions_agent | |
| from smart_writer_kit.agent_for_outline_update import update_outline_status_agent | |
| from smart_writer_kit.agent_for_kb_update import suggest_new_kb_terms_agent | |
| from ui_components.debounce_manager import DebounceManager | |
| # --- Mock Data (for UI population only) --- | |
| MOCK_STYLE = """故事:人类逐渐走向消亡时,人形机器人的休闲生活。 | |
| 风格:自然平淡,文字细腻,描绘未来的荒凉与宁静交织的景象。 | |
| 主题:探索人类与机器的界限,记忆与身份的意义。 | |
| """ | |
| MOCK_KNOWLEDGE_BASE = [ | |
| ["Alpha", "故事的主角,女性人形机器人,外表与人类无异。性格有线"], | |
| ["横滨", "故事发生的主要城市。由于海平面上升,城市部分地区被淹没,形成独特的水上景观。"] | |
| ] | |
| MOCK_SHORT_TERM_OUTLINE = [ | |
| [False, "故事的场景设定:海平面上升后的城市景观。"], | |
| [False, "介绍主角 Alpha 的日常生活和她与其他机器人的互动。"], | |
| [False, "Alpha 发现了一张旧照片,勾起了她对过去人类生活的好奇心。"], | |
| [False, "奶油蛋糕的制作方法。"] | |
| ] | |
| ## 按日常向动画剧情走向写的长纲要。具体。 | |
| MOCK_LONG_TERM_OUTLINE = [ | |
| [False, "介绍故事背景。人类逐渐减少,机器人和人的互动。"], | |
| [False, "Alpha 决定离开居住地,到东京寻找失散的朋友。"], | |
| [False, "月亮变成了一个巨大的 Disco 灯球。机器人不受控制地开始跳舞,导致全球范围内的混乱。"], | |
| ] | |
| # --- UI Helper Functions --- | |
| def get_stats(text): | |
| """Calculate word count and read time.""" | |
| if not text: | |
| return "0 Words | 0 mins" | |
| words = len(text.split()) | |
| read_time = max(1, words // 200) # Average reading speed | |
| return f"{words} Words | ~{read_time} mins" | |
| # --- UI Construction --- | |
| def create_smart_writer_tab(): | |
| # Initialize DebounceManager | |
| debounce_manager = DebounceManager(debounce_time=2.0, tick_time=0.3, loading_text="稍后开始续写") | |
| with gr.Row(equal_height=False, elem_id="indicator-writing-tab"): | |
| # --- Left Column: Entity Console --- | |
| with gr.Column(scale=1) as left_panel: | |
| style_input = gr.Textbox( | |
| label="整体故事和风格", | |
| lines=8, | |
| value=MOCK_STYLE, | |
| interactive=True | |
| ) | |
| with gr.Accordion("写作知识库", open=True): | |
| kb_input = gr.Dataframe( | |
| headers=["名称", "说明"], | |
| datatype=["str", "str"], | |
| value=MOCK_KNOWLEDGE_BASE, | |
| interactive=True, | |
| wrap=True | |
| ) | |
| with gr.Row(): | |
| btn_suggest_kb = gr.Button("🔍 提取新词条", size="sm") | |
| suggested_kb_dataframe = gr.Dataframe( | |
| headers=["Term", "Description"], | |
| datatype=["str", "str"], | |
| visible=False, | |
| interactive=False, | |
| label="推荐词条" | |
| ) | |
| with gr.Accordion("当前章节大纲", open=True): | |
| short_outline_input = gr.Dataframe( | |
| headers=["Done", "Task"], | |
| datatype=["bool", "str"], | |
| value=MOCK_SHORT_TERM_OUTLINE, | |
| interactive=True, | |
| label="当前章节大纲", | |
| col_count=(2, "fixed"), | |
| ) | |
| with gr.Row(): | |
| btn_sync_outline = gr.Button("🔄 同步状态", size="sm") | |
| with gr.Accordion("故事整体大纲", open=False): | |
| long_outline_input = gr.Dataframe( | |
| headers=["Done", "Task"], | |
| datatype=["bool", "str"], | |
| value=MOCK_LONG_TERM_OUTLINE, | |
| interactive=True, | |
| label="故事总纲", | |
| col_count=(2, "fixed"), | |
| ) | |
| # --- Right Column: Writing Canvas --- | |
| with gr.Column(scale=5): | |
| # --- RIBBON AREA (Top of Editor) --- | |
| with gr.Row(variant="panel", elem_classes=["ribbon-container"]): | |
| # Area 1: Real-time Continuation (Flow) | |
| with gr.Column(scale=1, min_width=200): | |
| flow_suggestion_display = gr.Textbox( | |
| show_label=True, | |
| label="实时续写建议", | |
| placeholder="(等待输入或点击“换一个”...)", | |
| lines=3, | |
| interactive=False, | |
| elem_classes=["flow-suggestion-box"], | |
| ) | |
| btn_accept_flow = gr.Button("采纳续写 (Tab)", size="sm", variant="primary", elem_id='btn-action-accept-flow') | |
| btn_change_flow = gr.Button("换一个 (Shift+Tab)", size="sm", elem_id='btn-action-change-flow') | |
| # Debounce Progress Indicator (Using Manager) | |
| debounce_state, debounce_timer, debounce_progress = debounce_manager.create_ui() | |
| debounce_progress.visible = True | |
| # Area 2: Paragraph Continuation (Inspiration) | |
| with gr.Column(scale=1, min_width=200): | |
| inspiration_prompt_input = gr.Textbox( | |
| label="续写提示", | |
| placeholder="例如:写一段关于...的描写", | |
| lines=2 | |
| ) | |
| prompt_suggestions_dataset = gr.Dataset( | |
| label="推荐提示 (点击填入)", | |
| components=[gr.Textbox(visible=False)], | |
| samples=[["生成建议..."], ["生成建议..."], ["生成建议..."]], | |
| type="values" | |
| ) | |
| refresh_suggestions_btn = gr.Button("🎲 换一批建议", size="sm", variant="secondary") # Combined trigger | |
| with gr.Row(): | |
| btn_generate_para = gr.Button("整段续写 (Cmd+Enter)", size="sm", variant="primary", elem_id="btn-action-create-paragraph") | |
| btn_change_para = gr.Button("换一个", size="sm") | |
| btn_accept_para = gr.Button("采纳", size="sm") | |
| para_suggestion_display = gr.Textbox( | |
| show_label=False, | |
| placeholder="(点击“整段续写”生成内容...)", | |
| lines=3, | |
| interactive=False | |
| ) | |
| # Area 3: Adjust/Polish (Placeholder) | |
| with gr.Column(scale=1, min_width=200): | |
| gr.Markdown("#### 🛠️ 调整润色") | |
| gr.Markdown("(Coming Soon)") | |
| # --- TOOLBAR --- | |
| with gr.Row(elem_classes=["toolbar"]): | |
| stats_display = gr.Markdown("0 Words | 0 mins") | |
| # --- EDITOR --- | |
| editor = gr.Textbox( | |
| label="沉浸写作画布", | |
| placeholder="开始你的创作...", | |
| lines=25, # Reduced lines slightly to accommodate ribbon | |
| elem_classes=["writing-editor"], | |
| elem_id="writing-editor", | |
| show_label=False, | |
| ) | |
| # --- Interactions --- | |
| # 1. Stats | |
| editor.change(fn=get_stats, inputs=editor, outputs=stats_display) | |
| # 2. Flow Suggestion Logic (Using DebounceManager) | |
| # Bind reset logic to editor change | |
| editor.change( | |
| fn=debounce_manager.reset, | |
| inputs=[editor, style_input, kb_input, short_outline_input, long_outline_input], # Capture all context as payload | |
| outputs=[debounce_state, debounce_timer, debounce_progress] | |
| ) | |
| # Bind tick logic | |
| def flow_suggestion_trigger(editor_content, style, kb, short_outline, long_outline): | |
| return fetch_flow_suggestion_agent(editor_content, style, kb, short_outline, long_outline) | |
| # Note: debounce_manager.tick calls the trigger function. | |
| # The lambda is used to pass the specific trigger function for this tab. | |
| debounce_timer.tick( | |
| fn=lambda s: debounce_manager.tick(s, flow_suggestion_trigger), | |
| inputs=[debounce_state], | |
| outputs=[debounce_progress, debounce_state, debounce_timer, flow_suggestion_display] | |
| ) | |
| btn_change_flow.click(fn=fetch_flow_suggestion_agent, inputs=[editor, style_input, kb_input, short_outline_input, long_outline_input], outputs=flow_suggestion_display) | |
| accept_flow_fn_inputs = [editor, flow_suggestion_display] | |
| # accept_flow_suggestion_agent returns modified editor text | |
| btn_accept_flow.click( | |
| fn=lambda e, s: (accept_flow_suggestion_agent(e, s), ""), # Accept and clear suggestion | |
| inputs=accept_flow_fn_inputs, | |
| outputs=[editor, flow_suggestion_display] | |
| ) | |
| # 3. Paragraph Continuation Logic (Updated with prompt input) | |
| def generate_paragraph_wrapper(prompt_val, editor_val, style, kb, short, long_): | |
| return fetch_paragraph_continuation_agent(prompt_val, editor_val, style, kb, short, long_) | |
| for btn in [btn_generate_para, btn_change_para]: | |
| btn.click( | |
| fn=generate_paragraph_wrapper, | |
| inputs=[inspiration_prompt_input, editor, style_input, kb_input, short_outline_input, long_outline_input], | |
| outputs=[para_suggestion_display] | |
| ) | |
| def accept_para_wrapper(curr, new): | |
| # Reuse apply_inspiration_agent but extract text. | |
| # It returns (new_text, modal_update, empty_string) | |
| res = apply_inspiration_agent(curr, new) | |
| return res[0], "" | |
| btn_accept_para.click( | |
| fn=accept_para_wrapper, | |
| inputs=[editor, para_suggestion_display], | |
| outputs=[editor, para_suggestion_display] | |
| ) | |
| # Suggestions Logic | |
| # Trigger for suggestion generation | |
| def refresh_suggestions_wrapper(editor_content, style, kb, short_outline, long_outline): | |
| s1, s2, s3 = fetch_prompt_suggestions_agent(editor_content, style, kb, short_outline, long_outline) | |
| # Return a gr.update object to properly update the Dataset component | |
| return gr.update(samples=[[s1], [s2], [s3]]) | |
| refresh_suggestions_btn.click( | |
| fn=refresh_suggestions_wrapper, | |
| inputs=[editor, style_input, kb_input, short_outline_input, long_outline_input], | |
| outputs=[prompt_suggestions_dataset] | |
| ) | |
| # Dataset click -> fill prompt input | |
| def fill_prompt_from_dataset(val): | |
| return val[0] | |
| prompt_suggestions_dataset.click( | |
| fn=fill_prompt_from_dataset, | |
| inputs=prompt_suggestions_dataset, | |
| outputs=inspiration_prompt_input | |
| ) | |
| # 4. Agent-based Context Updates | |
| btn_sync_outline.click( | |
| fn=update_outline_status_agent, | |
| inputs=[short_outline_input, editor], | |
| outputs=[short_outline_input] | |
| ) | |
| btn_suggest_kb.click( | |
| fn=suggest_new_kb_terms_agent, | |
| inputs=[kb_input, editor], | |
| outputs=[suggested_kb_dataframe] | |
| ) |