File size: 16,499 Bytes
62f57ec
f1a0148
 
 
 
62f57ec
d88128c
 
c7ac7fd
 
62f57ec
f1a0148
c7ac7fd
 
 
 
 
 
 
 
 
 
f1a0148
 
c7ac7fd
 
 
62f57ec
 
 
d88128c
62f57ec
d88128c
 
f1a0148
62f57ec
 
 
 
f1a0148
62f57ec
 
f1a0148
733799a
 
 
d88128c
 
 
 
0084d0b
 
 
 
c7ac7fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1a0148
62f57ec
 
 
 
 
 
f1a0148
 
 
 
d88128c
 
62f57ec
d88128c
 
f1a0148
62f57ec
 
 
 
f1a0148
62f57ec
 
 
459ac7b
d88128c
 
 
 
 
733799a
 
 
 
 
0084d0b
 
 
e9c8adc
0084d0b
 
f1a0148
 
 
62f57ec
 
 
 
 
 
 
 
 
f1a0148
62f57ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1a0148
62f57ec
 
 
 
 
 
 
d88128c
 
62f57ec
 
 
 
d88128c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1a0148
62f57ec
 
 
 
 
d88128c
62f57ec
f1a0148
62f57ec
 
 
 
 
 
 
d88128c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
733799a
 
 
 
 
 
 
 
 
971cbfc
733799a
 
 
 
 
 
 
 
971cbfc
733799a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9c8adc
0084d0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62f57ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1a0148
62f57ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7ac7fd
62f57ec
 
 
 
 
 
 
 
c7ac7fd
 
62f57ec
 
c7ac7fd
 
62f57ec
 
c7ac7fd
62f57ec
d88128c
 
62f57ec
c7ac7fd
62f57ec
 
c7ac7fd
 
62f57ec
 
c7ac7fd
 
62f57ec
733799a
c7ac7fd
 
733799a
d88128c
c7ac7fd
 
d88128c
0084d0b
 
 
683c2ff
0084d0b
 
 
 
 
62f57ec
 
c7ac7fd
 
 
 
 
 
 
 
 
 
 
f1a0148
 
 
62f57ec
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
# 한국어 TTS Arena - TTS Router
import os
import json
import base64
import tempfile
import requests
import urllib.request
import urllib.parse
import wave
import struct
from dotenv import load_dotenv

# Optional: scipy for high-quality resampling
try:
    from scipy import signal
    from scipy.io import wavfile
    import numpy as np
    HAS_SCIPY = True
except ImportError:
    HAS_SCIPY = False
    print("Warning: scipy not installed. Using basic resampling.")

load_dotenv()

# Target sample rate for all TTS outputs (for fair comparison)
TARGET_SAMPLE_RATE = 16000

# 한국어 지원 TTS 제공자 매핑
# - 채널톡: 자체 API
# - ElevenLabs: 직접 API
# - OpenAI: API (gpt-4o-mini-tts)
# - Google: API
# - CLOVA: 네이버 클라우드 API
# - Supertone: API

CHANNEL_TTS_URL = os.getenv(
    "CHANNEL_TTS_URL",
    "https://ch-tts-streaming-demo.channel.io/v1/text-to-speech"
)

ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")
ELEVENLABS_VOICE_ID = os.getenv("ELEVENLABS_VOICE_ID", "21m00Tcm4TlvDq8ikWAM")  # Rachel (기본)

SUPERTONE_API_KEY = os.getenv("SUPERTONE_API_KEY")
SUPERTONE_VOICE_ID = os.getenv("SUPERTONE_VOICE_ID", "91992bbd4758bdcf9c9b01")  # 기본 보이스

# CLOVA TTS (네이버 클라우드)
CLOVA_CLIENT_ID = os.getenv("CLOVA_CLIENT_ID")
CLOVA_API_KEY = os.getenv("CLOVA_API_KEY")

# Humelo DIVE TTS
HUMELO_API_KEY = os.getenv("HUMELO_API_KEY")
HUMELO_API_URL = "https://agitvxptajouhvoatxio.supabase.co/functions/v1/dive-synthesize-v1"

def resample_wav_to_16khz(input_path: str) -> str:
    """
    Resample a WAV file to 16kHz for fair comparison.
    Returns the path to the resampled file.
    """
    if not HAS_SCIPY:
        # If scipy is not available, return original file
        print(f"[Resample] scipy not available, skipping resample for {input_path}")
        return input_path
    
    try:
        # Read the original WAV file
        original_rate, data = wavfile.read(input_path)
        
        # If already 16kHz, return as-is
        if original_rate == TARGET_SAMPLE_RATE:
            print(f"[Resample] Already {TARGET_SAMPLE_RATE}Hz, no resample needed")
            return input_path
        
        print(f"[Resample] Resampling from {original_rate}Hz to {TARGET_SAMPLE_RATE}Hz")
        
        # Handle stereo to mono conversion if needed
        if len(data.shape) > 1:
            data = data.mean(axis=1).astype(data.dtype)
        
        # Calculate the number of samples in the output
        num_samples = int(len(data) * TARGET_SAMPLE_RATE / original_rate)
        
        # Resample using scipy
        resampled_data = signal.resample(data, num_samples)
        
        # Normalize to int16 range
        if resampled_data.dtype != np.int16:
            # Normalize float to int16
            max_val = np.max(np.abs(resampled_data))
            if max_val > 0:
                resampled_data = (resampled_data / max_val * 32767).astype(np.int16)
            else:
                resampled_data = resampled_data.astype(np.int16)
        
        # Save to new temporary file
        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
            output_path = f.name
        
        wavfile.write(output_path, TARGET_SAMPLE_RATE, resampled_data)
        
        # Remove original file
        os.remove(input_path)
        
        print(f"[Resample] Successfully resampled to {output_path}")
        return output_path
        
    except Exception as e:
        print(f"[Resample] Error resampling: {e}, returning original")
        return input_path


def convert_mp3_to_wav_16khz(input_path: str) -> str:
    """
    Convert MP3 to WAV at 16kHz using pydub (if available) or ffmpeg.
    """
    try:
        from pydub import AudioSegment
        
        print(f"[Convert] Converting MP3 to WAV 16kHz: {input_path}")
        
        # Load MP3
        audio = AudioSegment.from_mp3(input_path)
        
        # Convert to mono and set sample rate
        audio = audio.set_channels(1).set_frame_rate(TARGET_SAMPLE_RATE)
        
        # Export as WAV
        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
            output_path = f.name
        
        audio.export(output_path, format="wav")
        
        # Remove original MP3
        os.remove(input_path)
        
        print(f"[Convert] Successfully converted to {output_path}")
        return output_path
        
    except ImportError:
        print("[Convert] pydub not available, trying ffmpeg directly")
        try:
            import subprocess
            
            with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
                output_path = f.name
            
            subprocess.run([
                "ffmpeg", "-y", "-i", input_path,
                "-ar", str(TARGET_SAMPLE_RATE),
                "-ac", "1",
                output_path
            ], check=True, capture_output=True)
            
            os.remove(input_path)
            return output_path
            
        except Exception as e:
            print(f"[Convert] ffmpeg conversion failed: {e}, returning original")
            return input_path
    except Exception as e:
        print(f"[Convert] Error converting: {e}, returning original")
        return input_path


model_mapping = {
    # 채널톡 TTS (한국어 특화)
    "channel-hana": {
        "provider": "channel",
        "voice": "hana",
    },
    # ElevenLabs (다국어 지원) - 직접 API 호출
    "eleven-multilingual-v2": {
        "provider": "elevenlabs",
        "model": "eleven_multilingual_v2",
    },
    # OpenAI TTS (gpt-4o-mini-tts)
    "openai-gpt-4o-mini-tts": {
        "provider": "openai",
        "model": "gpt-4o-mini-tts",
        "voice": "coral",
    },
    # Google Cloud TTS
    "google-wavenet": {
        "provider": "google",
        "voice": "ko-KR-Wavenet-A",
    },
    "google-neural2": {
        "provider": "google",
        "voice": "ko-KR-Neural2-A",
    },
    # CLOVA TTS (네이버 클라우드 - 한국어 특화)
    "clova-nara": {
        "provider": "clova",
        "speaker": "nara",
    },
    # Supertone TTS (한국어 특화)
    "supertone-sona": {
        "provider": "supertone",
        "model": "sona_speech_1",
    },
    # Humelo DIVE TTS (한국어 특화)
    "humelo-sia": {
        "provider": "humelo",
        "voice": "리아",
        "emotion": "neutral",
    },
}


def predict_channel_tts(text: str, voice: str = "hana") -> str:
    """채널톡 TTS API 호출"""
    url = f"{CHANNEL_TTS_URL}/{voice}"
    
    response = requests.post(
        url,
        headers={"Content-Type": "application/json"},
        json={"text": text, "output_format": "wav_24000"},
        timeout=30,
    )
    response.raise_for_status()
    
    # 임시 파일에 저장
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
        f.write(response.content)
        return f.name


def predict_elevenlabs_tts(text: str, model: str = "eleven_multilingual_v2") -> str:
    """ElevenLabs TTS API 직접 호출"""
    api_key = ELEVENLABS_API_KEY
    if not api_key:
        raise ValueError("ELEVENLABS_API_KEY 환경 변수가 설정되지 않았습니다.")
    
    voice_id = ELEVENLABS_VOICE_ID
    
    response = requests.post(
        f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}",
        headers={
            "xi-api-key": api_key,
            "Content-Type": "application/json",
            "Accept": "audio/mpeg",
        },
        json={
            "text": text,
            "model_id": model,
            "voice_settings": {
                "stability": 0.5,
                "similarity_boost": 0.75,
            },
        },
        timeout=60,
    )
    response.raise_for_status()
    
    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
        f.write(response.content)
        return f.name


def predict_openai_tts(text: str, model: str = "gpt-4o-mini-tts", voice: str = "coral") -> str:
    """OpenAI TTS API 호출 (gpt-4o-mini-tts 지원)"""
    api_key = os.getenv("OPENAI_API_KEY")
    if not api_key:
        raise ValueError("OPENAI_API_KEY 환경 변수가 설정되지 않았습니다.")
    
    # gpt-4o-mini-tts용 instructions (한국어 TTS에 최적화)
    instructions = """Voice: Natural and clear Korean voice, with appropriate intonation and rhythm.
Punctuation: Well-structured with natural pauses for clarity.
Delivery: Calm, professional, and easy to understand.
Phrasing: Clear pronunciation with proper Korean phonetics.
Tone: Friendly yet professional, suitable for various contexts."""

    payload = {
        "model": model,
        "input": text,
        "voice": voice,
        "response_format": "wav",
    }
    
    # gpt-4o-mini-tts 모델은 instructions 지원
    if model == "gpt-4o-mini-tts":
        payload["instructions"] = instructions
    
    response = requests.post(
        "https://api.openai.com/v1/audio/speech",
        headers={
            "Authorization": f"Bearer {api_key}",
            "Content-Type": "application/json",
        },
        json=payload,
        timeout=60,
    )
    response.raise_for_status()
    
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
        f.write(response.content)
        return f.name


def predict_clova_tts(text: str, speaker: str = "nara") -> str:
    """네이버 클라우드 CLOVA TTS API 호출"""
    client_id = CLOVA_CLIENT_ID
    client_secret = CLOVA_API_KEY
    
    if not client_id or not client_secret:
        raise ValueError("CLOVA_CLIENT_ID 또는 CLOVA_API_KEY 환경 변수가 설정되지 않았습니다.")
    
    enc_text = urllib.parse.quote(text)
    data = f"speaker={speaker}&volume=0&speed=0&pitch=0&format=mp3&text={enc_text}"
    url = "https://naveropenapi.apigw.ntruss.com/tts-premium/v1/tts"
    
    request = urllib.request.Request(url)
    request.add_header("X-NCP-APIGW-API-KEY-ID", client_id)
    request.add_header("X-NCP-APIGW-API-KEY", client_secret)
    
    response = urllib.request.urlopen(request, data=data.encode('utf-8'), timeout=60)
    
    if response.getcode() != 200:
        raise ValueError(f"CLOVA TTS API 오류: {response.getcode()}")
    
    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
        f.write(response.read())
        return f.name


def predict_supertone_tts(text: str, model: str = "sona_speech_1") -> str:
    """Supertone TTS API 호출"""
    api_key = SUPERTONE_API_KEY
    if not api_key:
        raise ValueError("SUPERTONE_API_KEY 환경 변수가 설정되지 않았습니다.")
    
    voice_id = SUPERTONE_VOICE_ID
    
    response = requests.post(
        f"https://supertoneapi.com/v1/text-to-speech/{voice_id}",
        headers={
            "x-sup-api-key": api_key,
            "Content-Type": "application/json",
        },
        json={
            "text": text,
            "language": "ko",
            "model": model,
            "output_format": "wav",
            "voice_settings": {
                "pitch_shift": 0,
                "pitch_variance": 1,
                "speed": 1,
            },
        },
        timeout=60,
    )
    response.raise_for_status()
    
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
        f.write(response.content)
        return f.name


def predict_humelo_tts(text: str, voice: str = "리아", emotion: str = "neutral") -> str:
    """Humelo DIVE TTS API 호출"""
    api_key = HUMELO_API_KEY
    if not api_key:
        raise ValueError("HUMELO_API_KEY 환경 변수가 설정되지 않았습니다.")
    
    response = requests.post(
        HUMELO_API_URL,
        headers={
            "Content-Type": "application/json",
            "X-API-Key": api_key,
        },
        json={
            "text": text,
            "mode": "preset",
            "voiceName": voice,
            "emotion": emotion,
            "lang": "ko",
        },
        timeout=60,
    )
    response.raise_for_status()
    
    data = response.json()
    audio_url = data.get("audio_url")
    
    if not audio_url:
        raise ValueError("Humelo API가 오디오 URL을 반환하지 않았습니다.")
    
    # Download audio from URL
    audio_response = requests.get(audio_url, timeout=60)
    audio_response.raise_for_status()
    
    # Determine file extension from URL or content-type
    content_type = audio_response.headers.get("Content-Type", "")
    if "mp3" in content_type or audio_url.endswith(".mp3"):
        suffix = ".mp3"
    else:
        suffix = ".wav"
    
    with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as f:
        f.write(audio_response.content)
        return f.name


def predict_google_tts(text: str, voice: str = "ko-KR-Wavenet-A") -> str:
    """Google Cloud TTS API 호출"""
    api_key = os.getenv("GOOGLE_API_KEY")
    if not api_key:
        raise ValueError("GOOGLE_API_KEY 환경 변수가 설정되지 않았습니다.")
    
    response = requests.post(
        f"https://texttospeech.googleapis.com/v1/text:synthesize?key={api_key}",
        headers={"Content-Type": "application/json"},
        json={
            "input": {"text": text},
            "voice": {
                "languageCode": "ko-KR",
                "name": voice,
            },
            "audioConfig": {
                "audioEncoding": "LINEAR16",
                "sampleRateHertz": 24000,
            },
        },
        timeout=30,
    )
    response.raise_for_status()
    
    audio_content = response.json().get("audioContent")
    if not audio_content:
        raise ValueError("Google TTS API가 오디오를 반환하지 않았습니다.")
    
    audio_bytes = base64.b64decode(audio_content)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
        f.write(audio_bytes)
        return f.name


def predict_tts(text: str, model: str) -> str:
    """
    TTS 생성 메인 함수
    
    Args:
        text: 합성할 텍스트
        model: 모델 ID (model_mapping의 키)
        
    Returns:
        생성된 오디오 파일 경로 (16kHz WAV로 통일)
    """
    print(f"[TTS] Predicting for model: {model}")
    
    if model not in model_mapping:
        raise ValueError(f"지원하지 않는 모델입니다: {model}")
    
    config = model_mapping[model]
    provider = config["provider"]
    audio_path = None
    is_mp3 = False
    
    if provider == "channel":
        audio_path = predict_channel_tts(text, config.get("voice", "hana"))
        # Channel TTS returns WAV at 24kHz
    
    elif provider == "openai":
        audio_path = predict_openai_tts(
            text,
            config.get("model", "gpt-4o-mini-tts"),
            config.get("voice", "coral"),
        )
        # OpenAI returns WAV
    
    elif provider == "google":
        audio_path = predict_google_tts(text, config.get("voice", "ko-KR-Wavenet-A"))
        # Google returns WAV at 24kHz
    
    elif provider == "elevenlabs":
        audio_path = predict_elevenlabs_tts(text, config.get("model", "eleven_multilingual_v2"))
        is_mp3 = True  # ElevenLabs returns MP3
    
    elif provider == "supertone":
        audio_path = predict_supertone_tts(text, config.get("model", "sona_speech_1"))
        # Supertone returns WAV
    
    elif provider == "clova":
        audio_path = predict_clova_tts(text, config.get("speaker", "nara"))
        is_mp3 = True  # CLOVA returns MP3
    
    elif provider == "humelo":
        audio_path = predict_humelo_tts(
            text, 
            config.get("voice", "리아"),
            config.get("emotion", "neutral"),
        )
        # Humelo might return MP3 or WAV, check extension
        is_mp3 = audio_path.endswith(".mp3")
    
    else:
        raise ValueError(f"알 수 없는 provider: {provider}")
    
    # Standardize to 16kHz WAV for fair comparison
    if audio_path:
        if is_mp3:
            # Convert MP3 to WAV at 16kHz
            audio_path = convert_mp3_to_wav_16khz(audio_path)
        else:
            # Resample WAV to 16kHz
            audio_path = resample_wav_to_16khz(audio_path)
    
    return audio_path


if __name__ == "__main__":
    # 테스트
    test_text = "안녕하세요, 채널톡 TTS 테스트입니다."
    
    print("Testing Channel TTS...")
    try:
        path = predict_channel_tts(test_text)
        print(f"  Success: {path}")
    except Exception as e:
        print(f"  Error: {e}")