sam3-test / app.py
chris-propeller's picture
add a comment
64cda1b
import spaces
import gradio as gr
@spaces.GPU
def sam3_inference(image, text_prompt=None, boxes=None, box_labels=None, points=None, point_labels=None, confidence_threshold=0.5):
"""
Core SAM3 inference function for Stateless GPU environment
Supports text prompts, box prompts, and point prompts (individually or combined)
Returns raw results for both UI and API use
"""
# Import everything inside the GPU function
import torch
import numpy as np
from PIL import Image
import base64
import io
from transformers import Sam3Model, Sam3Processor
try:
# Validate inputs
if not text_prompt and not boxes and not points:
raise ValueError("At least one of text_prompt, boxes, or points must be provided")
if boxes and not box_labels:
raise ValueError("box_labels must be provided when boxes are specified")
if points and not point_labels:
raise ValueError("point_labels must be provided when points are specified")
# Handle base64 input if needed
if isinstance(image, str):
if image.startswith('data:image'):
image = image.split(',')[1]
image_bytes = base64.b64decode(image)
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
# Initialize model and processor
device = "cuda" if torch.cuda.is_available() else "cpu"
model = Sam3Model.from_pretrained(
"facebook/sam3",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
).to(device)
processor = Sam3Processor.from_pretrained("facebook/sam3")
# Prepare processor inputs based on prompt type
processor_kwargs = {
"images": image,
"return_tensors": "pt"
}
# Add text prompt if provided
if text_prompt:
processor_kwargs["text"] = text_prompt.strip()
# Add box prompts if provided
if boxes and box_labels:
# Convert boxes to expected format: [[x1, y1, x2, y2], ...]
# Ensure boxes are in the right format for SAM3
formatted_boxes = []
formatted_labels = []
for i, box in enumerate(boxes):
if len(box) == 4: # [x1, y1, x2, y2]
formatted_boxes.append(box)
# Use the provided label (supports both positive=1 and negative=0)
if i < len(box_labels):
formatted_labels.append(box_labels[i])
else:
raise ValueError(f"Missing label for box {i}")
if formatted_boxes:
# Wrap in a single array to indicate batch size of 1
processor_kwargs["input_boxes"] = [formatted_boxes]
processor_kwargs["input_boxes_labels"] = [formatted_labels]
# Add point prompts if provided
if points and point_labels:
# Convert points to expected format: [[[x1, y1], [x2, y2]], ...]
# SAM3 expects points as nested lists for batch processing
formatted_points = []
formatted_point_labels = []
for i, point in enumerate(points):
if len(point) == 2: # [x, y]
formatted_points.append(point)
# Use the provided label (supports both positive=1 and negative=0)
if i < len(point_labels):
formatted_point_labels.append(point_labels[i])
else:
raise ValueError(f"Missing label for point {i}")
if formatted_points:
processor_kwargs["input_points"] = [formatted_points]
processor_kwargs["input_points_labels"] = [formatted_point_labels]
# Process input
inputs = processor(**processor_kwargs).to(device)
# Convert dtype to match model
for key in inputs:
if inputs[key].dtype == torch.float32:
inputs[key] = inputs[key].to(model.dtype)
# Run inference
with torch.no_grad():
outputs = model(**inputs)
# Post-process
results = processor.post_process_instance_segmentation(
outputs,
threshold=confidence_threshold,
mask_threshold=0.5,
target_sizes=inputs.get("original_sizes").tolist()
)[0]
return results
except Exception as e:
raise Exception(f"SAM3 inference error: {str(e)}")
@spaces.GPU
def gradio_interface(image, text_prompt, confidence_threshold):
"""Gradio interface wrapper for UI"""
import numpy as np
from PIL import Image
import io
try:
results = sam3_inference(image, text_prompt=text_prompt, confidence_threshold=confidence_threshold)
# Return results for UI
if len(results["masks"]) > 0:
# Convert first mask for display
mask_np = results["masks"][0].cpu().numpy().astype(np.uint8) * 255
score = results["scores"][0].item()
mask_image = Image.fromarray(mask_np, mode='L')
return f"Found {len(results['masks'])} masks. Best score: {score:.3f}", mask_image
else:
return "No masks found above confidence threshold", None
except Exception as e:
return f"Error: {str(e)}", None
@spaces.GPU
def api_predict(image, text_prompt, confidence_threshold):
"""API prediction function for simple Gradio API"""
import numpy as np
from PIL import Image
import base64
import io
try:
results = sam3_inference(image, text_prompt=text_prompt, confidence_threshold=confidence_threshold)
# Prepare API response
response = {
"masks": [],
"scores": [],
"prompt_type": "text",
"prompt_value": text_prompt,
"num_masks": len(results["masks"])
}
# Process each mask
for i in range(len(results["masks"])):
mask_np = results["masks"][i].cpu().numpy().astype(np.uint8) * 255
score = results["scores"][i].item()
if score >= confidence_threshold:
# Convert mask to base64 for API response
mask_image = Image.fromarray(mask_np, mode='L')
buffer = io.BytesIO()
mask_image.save(buffer, format='PNG')
mask_b64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
response["masks"].append(mask_b64)
response["scores"].append(score)
return response
except Exception as e:
return {"error": str(e)}
def _mask_to_polygons_original_size(binary_mask, epsilon=2.0):
"""
Convert binary mask to vector polygons (mask is already at original image size)
Args:
binary_mask: Binary mask array (0 or 1) at original image size
epsilon: Polygon simplification epsilon
Returns:
List of polygons, where each polygon is a list of [x, y] points in pixel coordinates
"""
import cv2
import numpy as np
try:
# Find contours using OpenCV
contours, _ = cv2.findContours(binary_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
polygons = []
for contour in contours:
if len(contour) < 3: # Skip small contours
continue
# Simplify polygon using Douglas-Peucker algorithm
simplified = cv2.approxPolyDP(contour, epsilon, True)
# Convert to list of [x, y] points
polygon_points = [[float(point[0][0]), float(point[0][1])] for point in simplified]
# Only add polygons with at least 3 points
if len(polygon_points) >= 3:
polygons.append(polygon_points)
return polygons
except Exception as e:
# Return empty list on error, but don't fail the entire request
print(f"Warning: Polygon extraction failed: {e}")
return []
@spaces.GPU
def sam2_compatible_api(data):
"""
SAM2-compatible API endpoint with SAM3 extensions
Supports text prompts (SAM3), points, and boxes (SAM2 compatible)
Includes vectorize option for polygon extraction
"""
import numpy as np
from PIL import Image
import base64
import io
import cv2
try:
inputs_data = data.get("inputs", {})
# Extract inputs
image_b64 = inputs_data.get("image")
text_prompts = inputs_data.get("text_prompts", [])
input_points = inputs_data.get("points", [])
input_point_labels = inputs_data.get("point_labels", [])
input_boxes = inputs_data.get("boxes", [])
input_box_labels = inputs_data.get("box_labels", [])
confidence_threshold = inputs_data.get("confidence_threshold", 0.5)
vectorize = inputs_data.get("vectorize", False)
simplify_epsilon = inputs_data.get("simplify_epsilon", 2.0)
# Validate inputs
if not image_b64:
return {"error": "No image provided", "success": False}
has_text = bool(text_prompts)
has_points = bool(input_points and input_point_labels)
has_boxes = bool(input_boxes)
if not (has_text or has_points or has_boxes):
return {"error": "Must provide at least one prompt type: text_prompts, points+point_labels, or boxes", "success": False}
if has_points and len(input_points) != len(input_point_labels):
return {"error": "Number of points and point_labels must match", "success": False}
if has_boxes and input_box_labels and len(input_boxes) != len(input_box_labels):
return {"error": "Number of boxes and box_labels must match", "success": False}
# Decode image
if image_b64.startswith('data:image'):
image_b64 = image_b64.split(',')[1]
image_bytes = base64.b64decode(image_b64)
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
original_image_size = image.size # Store for response metadata
all_masks = []
all_scores = []
all_polygons = []
prompt_types = []
# Determine what prompt types are being used
if has_text:
prompt_types.append("text")
if has_points or has_boxes:
prompt_types.append("visual")
# Process text prompts individually (SAM3 works best with individual text prompts)
if has_text:
for text_prompt in text_prompts:
if text_prompt.strip(): # Skip empty prompts
results = sam3_inference(
image=image,
text_prompt=text_prompt.strip(),
confidence_threshold=confidence_threshold
)
if results and len(results["masks"]) > 0:
for i in range(len(results["masks"])):
mask_np = results["masks"][i].cpu().numpy().astype(np.uint8) * 255
score = results["scores"][i].item()
if score >= confidence_threshold:
# Convert mask to base64
mask_image = Image.fromarray(mask_np, mode='L')
buffer = io.BytesIO()
mask_image.save(buffer, format='PNG')
mask_b64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
all_masks.append(mask_b64)
all_scores.append(score)
# Extract polygons if vectorize is enabled
if vectorize:
binary_mask = (mask_np > 0).astype(np.uint8)
polygons = _mask_to_polygons_original_size(binary_mask, simplify_epsilon)
all_polygons.append(polygons)
# Process visual prompts (boxes and/or points) - can be combined in a single call
if has_boxes or has_points:
combined_boxes = input_boxes if has_boxes else None
combined_box_labels = input_box_labels if (has_boxes and input_box_labels) else ([1] * len(input_boxes) if has_boxes else None)
combined_points = input_points if has_points else None
combined_point_labels = input_point_labels if has_points else None
results = sam3_inference(
image=image,
text_prompt=None,
boxes=combined_boxes,
box_labels=combined_box_labels,
points=combined_points,
point_labels=combined_point_labels,
confidence_threshold=confidence_threshold
)
if results and len(results["masks"]) > 0:
for i in range(len(results["masks"])):
mask_np = results["masks"][i].cpu().numpy().astype(np.uint8) * 255
score = results["scores"][i].item()
if score >= confidence_threshold:
# Convert mask to base64
mask_image = Image.fromarray(mask_np, mode='L')
buffer = io.BytesIO()
mask_image.save(buffer, format='PNG')
mask_b64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
all_masks.append(mask_b64)
all_scores.append(score)
# Extract polygons if vectorize is enabled
if vectorize:
binary_mask = (mask_np > 0).astype(np.uint8)
polygons = _mask_to_polygons_original_size(binary_mask, simplify_epsilon)
all_polygons.append(polygons)
# Build SAM2-compatible response
response = {
"masks": all_masks,
"scores": all_scores,
"num_objects": len(all_masks),
"sam_version": "3.0",
"prompt_types": prompt_types,
"success": True
}
# Add polygon data if vectorize is enabled
if vectorize:
response.update({
"polygons": all_polygons,
"polygon_format": "pixel_coordinates",
"original_image_size": original_image_size
})
return response
except Exception as e:
return {"error": str(e), "success": False, "sam_version": "3.0"}
# Create comprehensive Gradio interface with API endpoints
def create_interface():
with gr.Blocks(title="SAM3 Inference API") as demo:
gr.HTML("<h1>SAM3 Promptable Concept Segmentation</h1>")
gr.HTML("<p>This Space provides both a UI and API for SAM3 inference with SAM2 compatibility. Use the interface below or call the API programmatically.</p>")
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Input Image")
text_input = gr.Textbox(label="Text Prompt", placeholder="Enter what to segment (e.g., 'cat', 'person', 'car')")
confidence_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.5, step=0.1, label="Confidence Threshold")
predict_btn = gr.Button("Segment", variant="primary")
with gr.Column():
info_output = gr.Textbox(label="Results Info")
mask_output = gr.Image(label="Sample Mask")
# Main UI prediction with API endpoint
predict_btn.click(
gradio_interface,
inputs=[image_input, text_input, confidence_slider],
outputs=[info_output, mask_output],
api_name="predict" # Creates /api/predict endpoint
)
# Simple API endpoint for Gradio format
gr.Interface(
fn=api_predict,
inputs=[
gr.Image(type="pil", label="Image"),
gr.Textbox(label="Text Prompt"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.5, label="Confidence Threshold")
],
outputs=gr.JSON(label="API Response"),
title="Simple API",
description="Returns structured JSON response with base64 encoded masks",
api_name="simple_api"
)
# SAM2-compatible API endpoint
with gr.Row():
gr.HTML("<h3>SAM2/SAM3 Compatible API</h3>")
with gr.Row():
api_input = gr.JSON(label="SAM2/SAM3 Compatible Input")
api_output = gr.JSON(label="SAM2/SAM3 Compatible Output")
with gr.Row():
api_btn = gr.Button("Test API", variant="secondary")
# Create the API endpoint
api_btn.click(
fn=sam2_compatible_api,
inputs=api_input,
outputs=api_output,
api_name="sam2_compatible"
)
# Add comprehensive API documentation
gr.HTML("""
<h2>API Usage</h2>
<h3>1. Simple Text API (Gradio format)</h3>
<pre>
import requests
import base64
# Encode your image to base64
with open("image.jpg", "rb") as f:
image_b64 = base64.b64encode(f.read()).decode()
# Make API request
response = requests.post(
"https://your-username-sam3-api.hf.space/api/predict",
json={
"data": [image_b64, "kitten", 0.5]
}
)
result = response.json()
</pre>
<h3>2. SAM2/SAM3 Compatible API (Inference Endpoint format)</h3>
<pre>
import requests
import base64
# Encode your image to base64
with open("image.jpg", "rb") as f:
image_b64 = base64.b64encode(f.read()).decode()
# SAM3 Text Prompts Only
response = requests.post(
"https://your-username-sam3-api.hf.space/api/sam2_compatible",
json={
"inputs": {
"image": image_b64,
"text_prompts": ["kitten", "toy"],
"confidence_threshold": 0.5
}
}
)
# SAM2 Compatible (Points/Boxes Only)
response = requests.post(
"https://your-username-sam3-api.hf.space/api/sam2_compatible",
json={
"inputs": {
"image": image_b64,
"boxes": [[100, 100, 200, 200]],
"box_labels": [1], # 1=positive, 0=negative
"confidence_threshold": 0.5
}
}
)
# SAM3 with Multiple Text Prompts (processed individually)
response = requests.post(
"https://your-username-sam3-api.hf.space/api/sam2_compatible",
json={
"inputs": {
"image": image_b64,
"text_prompts": ["cat", "dog"], # Each prompt processed separately
"confidence_threshold": 0.5
}
}
)
# SAM3 Combined Visual Prompts (boxes + points in single call)
response = requests.post(
"https://your-username-sam3-api.hf.space/api/sam2_compatible",
json={
"inputs": {
"image": image_b64,
"boxes": [[50, 50, 150, 150]], # Bounding box
"box_labels": [0], # 0=negative (exclude this area)
"points": [[200, 200]], # Point prompt
"point_labels": [1], # 1=positive point
"confidence_threshold": 0.5
}
}
)
# SAM3 with Vectorize (returns both masks and polygons)
response = requests.post(
"https://your-username-sam3-api.hf.space/api/sam2_compatible",
json={
"inputs": {
"image": image_b64,
"text_prompts": ["cat"],
"confidence_threshold": 0.5,
"vectorize": true,
"simplify_epsilon": 2.0
}
}
)
result = response.json()
</pre>
<h3>3. API Parameters</h3>
<h4>SAM2-Compatible API Input</h4>
<pre>
{
"inputs": {
"image": "base64_encoded_image_string",
// SAM3 NEW: Text-based prompts (each processed individually for best results)
"text_prompts": ["person", "car"], // List of text descriptions - each processed separately
// SAM2 COMPATIBLE: Point-based prompts (can be combined with text/boxes)
"points": [[x1, y1], [x2, y2]], // Individual points (not nested arrays)
"point_labels": [1, 0], // Labels for each point (1=positive/foreground, 0=negative/background)
// SAM2 COMPATIBLE: Bounding box prompts (can be combined with text/points)
"boxes": [[x1, y1, x2, y2], [x3, y3, x4, y4]], // Bounding boxes
"box_labels": [1, 0], // Labels for each box (1=positive, 0=negative/exclude)
"multimask_output": false, // Optional, defaults to False
"confidence_threshold": 0.5, // Optional, minimum confidence for returned masks
"vectorize": false, // Optional, return vector polygons instead of/in addition to bitmaps
"simplify_epsilon": 2.0 // Optional, polygon simplification factor
}
}
</pre>
<h4>API Response</h4>
<pre>
{
"masks": ["base64_encoded_mask_1", "base64_encoded_mask_2"],
"scores": [0.95, 0.87],
"num_objects": 2,
"sam_version": "3.0",
"prompt_types": ["text", "visual"], // Types of prompts used in the request
"success": true,
// If vectorize=true, additional fields:
"polygons": [[[x1,y1],[x2,y2],...], [[x1,y1],...]], // Array of polygon arrays for each object
"polygon_format": "pixel_coordinates",
"original_image_size": [width, height]
}
</pre>
""")
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(server_name="0.0.0.0", server_port=7860)