File size: 21,506 Bytes
ff6286a
ed9da19
 
a95034f
acd640e
a95034f
050a111
acd640e
050a111
a95034f
a36d7fa
 
 
 
 
 
 
 
a95034f
05ce346
acd640e
 
05ce346
 
 
 
acd640e
 
 
a36d7fa
 
 
 
 
 
334daaa
a36d7fa
c5fb163
 
 
 
 
 
4f603ce
05ce346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acd640e
 
 
 
 
05ce346
 
64cda1b
05ce346
 
 
acd640e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a36d7fa
05ce346
a95034f
4f603ce
a95034f
 
 
 
a36d7fa
a95034f
 
 
a36d7fa
a95034f
 
 
 
 
 
 
050a111
 
 
 
 
349db12
050a111
 
 
 
 
 
 
05ce346
050a111
a36d7fa
 
 
 
 
 
ed9da19
a36d7fa
 
 
ed9da19
 
a36d7fa
ed9da19
349db12
050a111
 
 
 
 
 
 
 
05ce346
050a111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b2c4ec
471a44f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
349db12
050a111
 
 
 
471a44f
050a111
 
 
 
 
471a44f
050a111
 
 
 
 
 
 
 
edcc62f
050a111
edcc62f
050a111
471a44f
3b2c4ec
050a111
 
 
 
 
 
edcc62f
050a111
 
 
edcc62f
050a111
edcc62f
 
 
 
 
050a111
 
 
 
 
 
471a44f
050a111
 
 
471a44f
b597179
050a111
acd640e
050a111
b597179
acd640e
b597179
acd640e
a45e44e
acd640e
a45e44e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edcc62f
a45e44e
edcc62f
a45e44e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
471a44f
050a111
471a44f
050a111
 
 
 
b597179
050a111
 
 
471a44f
 
 
 
 
 
 
 
 
 
050a111
 
 
 
a36d7fa
050a111
a36d7fa
050a111
ed9da19
a36d7fa
 
 
 
 
 
ed9da19
a36d7fa
 
 
ed9da19
050a111
a36d7fa
050a111
a36d7fa
050a111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
489896a
 
 
 
 
 
 
 
 
 
050a111
489896a
 
050a111
a36d7fa
ed9da19
050a111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acd640e
050a111
 
 
b597179
 
 
 
6f66eec
050a111
 
 
acd640e
050a111
 
 
b597179
 
 
acd640e
 
 
 
 
 
a45e44e
 
 
 
 
 
 
 
 
 
 
 
 
acd640e
 
 
 
 
 
 
 
edcc62f
b597179
6f66eec
050a111
 
 
471a44f
 
 
 
b597179
 
 
 
 
 
471a44f
 
 
 
050a111
 
 
 
 
 
 
 
 
 
a45e44e
 
050a111
acd640e
 
edcc62f
050a111
acd640e
 
 
050a111
 
471a44f
 
3b2c4ec
050a111
 
 
 
 
 
 
 
 
 
 
b597179
471a44f
 
 
 
 
 
050a111
 
 
 
a36d7fa
ed9da19
 
489896a
ed9da19
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
import spaces
import gradio as gr

@spaces.GPU
def sam3_inference(image, text_prompt=None, boxes=None, box_labels=None, points=None, point_labels=None, confidence_threshold=0.5):
    """
    Core SAM3 inference function for Stateless GPU environment
    Supports text prompts, box prompts, and point prompts (individually or combined)
    Returns raw results for both UI and API use
    """
    # Import everything inside the GPU function
    import torch
    import numpy as np
    from PIL import Image
    import base64
    import io
    from transformers import Sam3Model, Sam3Processor

    try:
        # Validate inputs
        if not text_prompt and not boxes and not points:
            raise ValueError("At least one of text_prompt, boxes, or points must be provided")

        if boxes and not box_labels:
            raise ValueError("box_labels must be provided when boxes are specified")

        if points and not point_labels:
            raise ValueError("point_labels must be provided when points are specified")

        # Handle base64 input if needed
        if isinstance(image, str):
            if image.startswith('data:image'):
                image = image.split(',')[1]
            image_bytes = base64.b64decode(image)
            image = Image.open(io.BytesIO(image_bytes)).convert("RGB")

        # Initialize model and processor
        device = "cuda" if torch.cuda.is_available() else "cpu"
        model = Sam3Model.from_pretrained(
            "facebook/sam3",
            torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
        ).to(device)
        processor = Sam3Processor.from_pretrained("facebook/sam3")

        # Prepare processor inputs based on prompt type
        processor_kwargs = {
            "images": image,
            "return_tensors": "pt"
        }

        # Add text prompt if provided
        if text_prompt:
            processor_kwargs["text"] = text_prompt.strip()

        # Add box prompts if provided
        if boxes and box_labels:
            # Convert boxes to expected format: [[x1, y1, x2, y2], ...]
            # Ensure boxes are in the right format for SAM3
            formatted_boxes = []
            formatted_labels = []

            for i, box in enumerate(boxes):
                if len(box) == 4:  # [x1, y1, x2, y2]
                    formatted_boxes.append(box)
                    # Use the provided label (supports both positive=1 and negative=0)
                    if i < len(box_labels):
                        formatted_labels.append(box_labels[i])
                    else:
                        raise ValueError(f"Missing label for box {i}")

            if formatted_boxes:
                # Wrap in a single array to indicate batch size of 1
                processor_kwargs["input_boxes"] = [formatted_boxes]
                processor_kwargs["input_boxes_labels"] = [formatted_labels]

        # Add point prompts if provided
        if points and point_labels:
            # Convert points to expected format: [[[x1, y1], [x2, y2]], ...]
            # SAM3 expects points as nested lists for batch processing
            formatted_points = []
            formatted_point_labels = []

            for i, point in enumerate(points):
                if len(point) == 2:  # [x, y]
                    formatted_points.append(point)
                    # Use the provided label (supports both positive=1 and negative=0)
                    if i < len(point_labels):
                        formatted_point_labels.append(point_labels[i])
                    else:
                        raise ValueError(f"Missing label for point {i}")

            if formatted_points:
                processor_kwargs["input_points"] = [formatted_points]
                processor_kwargs["input_points_labels"] = [formatted_point_labels]

        # Process input
        inputs = processor(**processor_kwargs).to(device)

        # Convert dtype to match model
        for key in inputs:
            if inputs[key].dtype == torch.float32:
                inputs[key] = inputs[key].to(model.dtype)

        # Run inference
        with torch.no_grad():
            outputs = model(**inputs)

        # Post-process
        results = processor.post_process_instance_segmentation(
            outputs,
            threshold=confidence_threshold,
            mask_threshold=0.5,
            target_sizes=inputs.get("original_sizes").tolist()
        )[0]

        return results

    except Exception as e:
        raise Exception(f"SAM3 inference error: {str(e)}")

@spaces.GPU
def gradio_interface(image, text_prompt, confidence_threshold):
    """Gradio interface wrapper for UI"""
    import numpy as np
    from PIL import Image
    import io

    try:
        results = sam3_inference(image, text_prompt=text_prompt, confidence_threshold=confidence_threshold)

        # Return results for UI
        if len(results["masks"]) > 0:
            # Convert first mask for display
            mask_np = results["masks"][0].cpu().numpy().astype(np.uint8) * 255
            score = results["scores"][0].item()
            mask_image = Image.fromarray(mask_np, mode='L')

            return f"Found {len(results['masks'])} masks. Best score: {score:.3f}", mask_image
        else:
            return "No masks found above confidence threshold", None

    except Exception as e:
        return f"Error: {str(e)}", None

@spaces.GPU
def api_predict(image, text_prompt, confidence_threshold):
    """API prediction function for simple Gradio API"""
    import numpy as np
    from PIL import Image
    import base64
    import io

    try:
        results = sam3_inference(image, text_prompt=text_prompt, confidence_threshold=confidence_threshold)

        # Prepare API response
        response = {
            "masks": [],
            "scores": [],
            "prompt_type": "text",
            "prompt_value": text_prompt,
            "num_masks": len(results["masks"])
        }

        # Process each mask
        for i in range(len(results["masks"])):
            mask_np = results["masks"][i].cpu().numpy().astype(np.uint8) * 255
            score = results["scores"][i].item()

            if score >= confidence_threshold:
                # Convert mask to base64 for API response
                mask_image = Image.fromarray(mask_np, mode='L')
                buffer = io.BytesIO()
                mask_image.save(buffer, format='PNG')
                mask_b64 = base64.b64encode(buffer.getvalue()).decode('utf-8')

                response["masks"].append(mask_b64)
                response["scores"].append(score)

        return response

    except Exception as e:
        return {"error": str(e)}

def _mask_to_polygons_original_size(binary_mask, epsilon=2.0):
    """
    Convert binary mask to vector polygons (mask is already at original image size)

    Args:
        binary_mask: Binary mask array (0 or 1) at original image size
        epsilon: Polygon simplification epsilon

    Returns:
        List of polygons, where each polygon is a list of [x, y] points in pixel coordinates
    """
    import cv2
    import numpy as np

    try:
        # Find contours using OpenCV
        contours, _ = cv2.findContours(binary_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        polygons = []

        for contour in contours:
            if len(contour) < 3:  # Skip small contours
                continue

            # Simplify polygon using Douglas-Peucker algorithm
            simplified = cv2.approxPolyDP(contour, epsilon, True)

            # Convert to list of [x, y] points
            polygon_points = [[float(point[0][0]), float(point[0][1])] for point in simplified]

            # Only add polygons with at least 3 points
            if len(polygon_points) >= 3:
                polygons.append(polygon_points)

        return polygons

    except Exception as e:
        # Return empty list on error, but don't fail the entire request
        print(f"Warning: Polygon extraction failed: {e}")
        return []

@spaces.GPU
def sam2_compatible_api(data):
    """
    SAM2-compatible API endpoint with SAM3 extensions
    Supports text prompts (SAM3), points, and boxes (SAM2 compatible)
    Includes vectorize option for polygon extraction
    """
    import numpy as np
    from PIL import Image
    import base64
    import io
    import cv2

    try:
        inputs_data = data.get("inputs", {})

        # Extract inputs
        image_b64 = inputs_data.get("image")
        text_prompts = inputs_data.get("text_prompts", [])
        input_points = inputs_data.get("points", [])
        input_point_labels = inputs_data.get("point_labels", [])
        input_boxes = inputs_data.get("boxes", [])
        input_box_labels = inputs_data.get("box_labels", [])
        confidence_threshold = inputs_data.get("confidence_threshold", 0.5)
        vectorize = inputs_data.get("vectorize", False)
        simplify_epsilon = inputs_data.get("simplify_epsilon", 2.0)

        # Validate inputs
        if not image_b64:
            return {"error": "No image provided", "success": False}

        has_text = bool(text_prompts)
        has_points = bool(input_points and input_point_labels)
        has_boxes = bool(input_boxes)

        if not (has_text or has_points or has_boxes):
            return {"error": "Must provide at least one prompt type: text_prompts, points+point_labels, or boxes", "success": False}

        if has_points and len(input_points) != len(input_point_labels):
            return {"error": "Number of points and point_labels must match", "success": False}

        if has_boxes and input_box_labels and len(input_boxes) != len(input_box_labels):
            return {"error": "Number of boxes and box_labels must match", "success": False}

        # Decode image
        if image_b64.startswith('data:image'):
            image_b64 = image_b64.split(',')[1]
        image_bytes = base64.b64decode(image_b64)
        image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
        original_image_size = image.size  # Store for response metadata

        all_masks = []
        all_scores = []
        all_polygons = []
        prompt_types = []

        # Determine what prompt types are being used
        if has_text:
            prompt_types.append("text")
        if has_points or has_boxes:
            prompt_types.append("visual")

        # Process text prompts individually (SAM3 works best with individual text prompts)
        if has_text:
            for text_prompt in text_prompts:
                if text_prompt.strip():  # Skip empty prompts
                    results = sam3_inference(
                        image=image,
                        text_prompt=text_prompt.strip(),
                        confidence_threshold=confidence_threshold
                    )

                    if results and len(results["masks"]) > 0:
                        for i in range(len(results["masks"])):
                            mask_np = results["masks"][i].cpu().numpy().astype(np.uint8) * 255
                            score = results["scores"][i].item()

                            if score >= confidence_threshold:
                                # Convert mask to base64
                                mask_image = Image.fromarray(mask_np, mode='L')
                                buffer = io.BytesIO()
                                mask_image.save(buffer, format='PNG')
                                mask_b64 = base64.b64encode(buffer.getvalue()).decode('utf-8')

                                all_masks.append(mask_b64)
                                all_scores.append(score)

                                # Extract polygons if vectorize is enabled
                                if vectorize:
                                    binary_mask = (mask_np > 0).astype(np.uint8)
                                    polygons = _mask_to_polygons_original_size(binary_mask, simplify_epsilon)
                                    all_polygons.append(polygons)

        # Process visual prompts (boxes and/or points) - can be combined in a single call
        if has_boxes or has_points:
            combined_boxes = input_boxes if has_boxes else None
            combined_box_labels = input_box_labels if (has_boxes and input_box_labels) else ([1] * len(input_boxes) if has_boxes else None)
            combined_points = input_points if has_points else None
            combined_point_labels = input_point_labels if has_points else None

            results = sam3_inference(
                image=image,
                text_prompt=None,
                boxes=combined_boxes,
                box_labels=combined_box_labels,
                points=combined_points,
                point_labels=combined_point_labels,
                confidence_threshold=confidence_threshold
            )

            if results and len(results["masks"]) > 0:
                for i in range(len(results["masks"])):
                    mask_np = results["masks"][i].cpu().numpy().astype(np.uint8) * 255
                    score = results["scores"][i].item()

                    if score >= confidence_threshold:
                        # Convert mask to base64
                        mask_image = Image.fromarray(mask_np, mode='L')
                        buffer = io.BytesIO()
                        mask_image.save(buffer, format='PNG')
                        mask_b64 = base64.b64encode(buffer.getvalue()).decode('utf-8')

                        all_masks.append(mask_b64)
                        all_scores.append(score)

                        # Extract polygons if vectorize is enabled
                        if vectorize:
                            binary_mask = (mask_np > 0).astype(np.uint8)
                            polygons = _mask_to_polygons_original_size(binary_mask, simplify_epsilon)
                            all_polygons.append(polygons)

        # Build SAM2-compatible response
        response = {
            "masks": all_masks,
            "scores": all_scores,
            "num_objects": len(all_masks),
            "sam_version": "3.0",
            "prompt_types": prompt_types,
            "success": True
        }

        # Add polygon data if vectorize is enabled
        if vectorize:
            response.update({
                "polygons": all_polygons,
                "polygon_format": "pixel_coordinates",
                "original_image_size": original_image_size
            })

        return response

    except Exception as e:
        return {"error": str(e), "success": False, "sam_version": "3.0"}

# Create comprehensive Gradio interface with API endpoints
def create_interface():
    with gr.Blocks(title="SAM3 Inference API") as demo:
        gr.HTML("<h1>SAM3 Promptable Concept Segmentation</h1>")
        gr.HTML("<p>This Space provides both a UI and API for SAM3 inference with SAM2 compatibility. Use the interface below or call the API programmatically.</p>")

        with gr.Row():
            with gr.Column():
                image_input = gr.Image(type="pil", label="Input Image")
                text_input = gr.Textbox(label="Text Prompt", placeholder="Enter what to segment (e.g., 'cat', 'person', 'car')")
                confidence_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.5, step=0.1, label="Confidence Threshold")
                predict_btn = gr.Button("Segment", variant="primary")

            with gr.Column():
                info_output = gr.Textbox(label="Results Info")
                mask_output = gr.Image(label="Sample Mask")

        # Main UI prediction with API endpoint
        predict_btn.click(
            gradio_interface,
            inputs=[image_input, text_input, confidence_slider],
            outputs=[info_output, mask_output],
            api_name="predict"  # Creates /api/predict endpoint
        )

        # Simple API endpoint for Gradio format
        gr.Interface(
            fn=api_predict,
            inputs=[
                gr.Image(type="pil", label="Image"),
                gr.Textbox(label="Text Prompt"),
                gr.Slider(minimum=0.1, maximum=1.0, value=0.5, label="Confidence Threshold")
            ],
            outputs=gr.JSON(label="API Response"),
            title="Simple API",
            description="Returns structured JSON response with base64 encoded masks",
            api_name="simple_api"
        )

        # SAM2-compatible API endpoint
        with gr.Row():
            gr.HTML("<h3>SAM2/SAM3 Compatible API</h3>")
        with gr.Row():
            api_input = gr.JSON(label="SAM2/SAM3 Compatible Input")
            api_output = gr.JSON(label="SAM2/SAM3 Compatible Output")
        with gr.Row():
            api_btn = gr.Button("Test API", variant="secondary")

        # Create the API endpoint
        api_btn.click(
            fn=sam2_compatible_api,
            inputs=api_input,
            outputs=api_output,
            api_name="sam2_compatible"
        )

        # Add comprehensive API documentation
        gr.HTML("""
        <h2>API Usage</h2>

        <h3>1. Simple Text API (Gradio format)</h3>
        <pre>
import requests
import base64

# Encode your image to base64
with open("image.jpg", "rb") as f:
    image_b64 = base64.b64encode(f.read()).decode()

# Make API request
response = requests.post(
    "https://your-username-sam3-api.hf.space/api/predict",
    json={
        "data": [image_b64, "kitten", 0.5]
    }
)

result = response.json()
        </pre>

        <h3>2. SAM2/SAM3 Compatible API (Inference Endpoint format)</h3>
        <pre>
import requests
import base64

# Encode your image to base64
with open("image.jpg", "rb") as f:
    image_b64 = base64.b64encode(f.read()).decode()

# SAM3 Text Prompts Only
response = requests.post(
    "https://your-username-sam3-api.hf.space/api/sam2_compatible",
    json={
        "inputs": {
            "image": image_b64,
            "text_prompts": ["kitten", "toy"],
            "confidence_threshold": 0.5
        }
    }
)

# SAM2 Compatible (Points/Boxes Only)
response = requests.post(
    "https://your-username-sam3-api.hf.space/api/sam2_compatible",
    json={
        "inputs": {
            "image": image_b64,
            "boxes": [[100, 100, 200, 200]],
            "box_labels": [1],  # 1=positive, 0=negative
            "confidence_threshold": 0.5
        }
    }
)

# SAM3 with Multiple Text Prompts (processed individually)
response = requests.post(
    "https://your-username-sam3-api.hf.space/api/sam2_compatible",
    json={
        "inputs": {
            "image": image_b64,
            "text_prompts": ["cat", "dog"],  # Each prompt processed separately
            "confidence_threshold": 0.5
        }
    }
)

# SAM3 Combined Visual Prompts (boxes + points in single call)
response = requests.post(
    "https://your-username-sam3-api.hf.space/api/sam2_compatible",
    json={
        "inputs": {
            "image": image_b64,
            "boxes": [[50, 50, 150, 150]],  # Bounding box
            "box_labels": [0],  # 0=negative (exclude this area)
            "points": [[200, 200]],  # Point prompt
            "point_labels": [1],  # 1=positive point
            "confidence_threshold": 0.5
        }
    }
)

# SAM3 with Vectorize (returns both masks and polygons)
response = requests.post(
    "https://your-username-sam3-api.hf.space/api/sam2_compatible",
    json={
        "inputs": {
            "image": image_b64,
            "text_prompts": ["cat"],
            "confidence_threshold": 0.5,
            "vectorize": true,
            "simplify_epsilon": 2.0
        }
    }
)

result = response.json()
        </pre>

        <h3>3. API Parameters</h3>
        <h4>SAM2-Compatible API Input</h4>
        <pre>
{
  "inputs": {
    "image": "base64_encoded_image_string",

    // SAM3 NEW: Text-based prompts (each processed individually for best results)
    "text_prompts": ["person", "car"],  // List of text descriptions - each processed separately

    // SAM2 COMPATIBLE: Point-based prompts (can be combined with text/boxes)
    "points": [[x1, y1], [x2, y2]],  // Individual points (not nested arrays)
    "point_labels": [1, 0],  // Labels for each point (1=positive/foreground, 0=negative/background)

    // SAM2 COMPATIBLE: Bounding box prompts (can be combined with text/points)
    "boxes": [[x1, y1, x2, y2], [x3, y3, x4, y4]],  // Bounding boxes
    "box_labels": [1, 0],  // Labels for each box (1=positive, 0=negative/exclude)

    "multimask_output": false,  // Optional, defaults to False
    "confidence_threshold": 0.5,  // Optional, minimum confidence for returned masks
    "vectorize": false,  // Optional, return vector polygons instead of/in addition to bitmaps
    "simplify_epsilon": 2.0  // Optional, polygon simplification factor
  }
}
        </pre>

        <h4>API Response</h4>
        <pre>
{
  "masks": ["base64_encoded_mask_1", "base64_encoded_mask_2"],
  "scores": [0.95, 0.87],
  "num_objects": 2,
  "sam_version": "3.0",
  "prompt_types": ["text", "visual"],  // Types of prompts used in the request
  "success": true,

  // If vectorize=true, additional fields:
  "polygons": [[[x1,y1],[x2,y2],...], [[x1,y1],...]],  // Array of polygon arrays for each object
  "polygon_format": "pixel_coordinates",
  "original_image_size": [width, height]
}
        </pre>
        """)

    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(server_name="0.0.0.0", server_port=7860)