Spaces:
Sleeping
Sleeping
File size: 29,341 Bytes
2e940ab 7f615fd 840bb85 7f615fd fdd626d 9de10a2 840bb85 0d6c60b 840bb85 7f615fd 840bb85 2a57dcf 840bb85 7776d1d 840bb85 4f1244e 840bb85 2a57dcf 4f1244e 2a57dcf 4f1244e 1b040ff 7776d1d 6bcc1a3 2a57dcf 4f1244e 672b8b5 9f9518a 7776d1d 9f9518a 2a57dcf 7776d1d 1b040ff 311ef01 7776d1d 7f615fd 7776d1d 1b040ff 7776d1d 2a57dcf 840bb85 4f1244e 1b040ff 7776d1d 9f9518a 7776d1d c31eee4 4f1244e 7776d1d 7f615fd 9de10a2 7f615fd 7153add 840bb85 9310eed 840bb85 9310eed 840bb85 9310eed 840bb85 9310eed 840bb85 9310eed 840bb85 9310eed 840bb85 0d6c60b 7153add 840bb85 9310eed 840bb85 0d6c60b 1b040ff 840bb85 0d6c60b 1b040ff 840bb85 0d6c60b 9efc461 0d6c60b 1b040ff 0d6c60b 1b040ff 0d6c60b 1b040ff 0d6c60b 840bb85 0d6c60b 7f615fd 4f1244e 1b040ff 4f1244e 1b040ff 4f1244e 311ef01 0d6c60b 7f615fd 1b040ff 840bb85 7f615fd 2a57dcf 7776d1d fdd626d 2a57dcf 7f615fd 4f1244e 2a57dcf 1b040ff 0d6c60b 9efc461 7f615fd 2a57dcf 4f1244e 840bb85 4f1244e c31eee4 7f615fd 9efc461 7f615fd 7776d1d 1b040ff 840bb85 1b040ff 4f1244e 7776d1d 1b040ff fdd626d 7776d1d 4f1244e 6bcc1a3 7776d1d 1b040ff 7776d1d 4f1244e 7776d1d 4f1244e 7776d1d 7f615fd 311ef01 1b040ff 7f615fd 2a57dcf 0d6c60b 1b040ff 0d6c60b 2a57dcf 7f615fd 4f1244e 7f615fd 1b040ff 4f1244e 7776d1d 6bcc1a3 4f1244e 7776d1d 4f1244e 7776d1d 311ef01 7f615fd 9de10a2 2a57dcf 7f615fd 0d6c60b 7f615fd 7776d1d 2a57dcf 7f615fd 1b040ff 840bb85 2a57dcf 311ef01 6bcc1a3 311ef01 6bcc1a3 311ef01 2a57dcf 7f615fd 1b040ff 311ef01 6bcc1a3 2a57dcf 6bcc1a3 7776d1d 2a57dcf 7f615fd 1b040ff 2a57dcf 7f615fd 0d6c60b 840bb85 0d6c60b 4f1244e 7f615fd 2a57dcf 7f615fd 311ef01 4f1244e 840bb85 4f1244e 840bb85 311ef01 4f1244e 840bb85 311ef01 840bb85 311ef01 7f615fd 7776d1d 9de10a2 7f615fd 2a57dcf 6bcc1a3 7776d1d 9de10a2 7776d1d c31eee4 7776d1d c31eee4 7776d1d 840bb85 7776d1d 6bcc1a3 7f615fd 6fb7520 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 |
import gradio as gr
import os
import tempfile
import shutil
import re
import json
from pathlib import Path
from huggingface_hub import HfApi, hf_hub_download, snapshot_download, list_repo_files
from safetensors.torch import load_file, save_file
import torch
import torch.nn.functional as F
import traceback
import glob
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
try:
from modelscope.hub.file_download import model_file_download as ms_file_download
from modelscope.hub.api import HubApi as ModelScopeApi
MODELScope_AVAILABLE = True
except ImportError:
MODELScope_AVAILABLE = False
def load_model_files(model_paths, model_format="safetensors", progress_callback=None):
"""
Load model weights from one or more files, supporting sharded safetensors and other formats.
"""
state_dict = {}
if model_format == "safetensors":
# Handle sharded safetensors files
for i, path in enumerate(model_paths):
if progress_callback:
progress_callback(f"Loading shard {i+1}/{len(model_paths)}: {os.path.basename(path)}")
part_dict = load_file(path)
state_dict.update(part_dict)
elif model_format in ["pth", "pt"]:
# PyTorch checkpoint files
for i, path in enumerate(model_paths):
if progress_callback:
progress_callback(f"Loading checkpoint {i+1}/{len(model_paths)}: {os.path.basename(path)}")
checkpoint = torch.load(path, map_location="cpu")
if isinstance(checkpoint, dict):
# Try to extract state dict from checkpoint
if "state_dict" in checkpoint:
state_dict.update(checkpoint["state_dict"])
elif "model_state_dict" in checkpoint:
state_dict.update(checkpoint["model_state_dict"])
elif "model" in checkpoint and isinstance(checkpoint["model"], dict):
state_dict.update(checkpoint["model"])
else:
# Assume the checkpoint itself is the state dict
state_dict.update(checkpoint)
elif model_format == "ckpt":
# Checkpoint files (similar to pth)
for i, path in enumerate(model_paths):
if progress_callback:
progress_callback(f"Loading checkpoint {i+1}/{len(model_paths)}: {os.path.basename(path)}")
checkpoint = torch.load(path, map_location="cpu")
if isinstance(checkpoint, dict):
if "state_dict" in checkpoint:
state_dict.update(checkpoint["state_dict"])
elif "model_state_dict" in checkpoint:
state_dict.update(checkpoint["model_state_dict"])
elif "model" in checkpoint and isinstance(checkpoint["model"], dict):
state_dict.update(checkpoint["model"])
else:
state_dict.update(checkpoint)
return state_dict
def read_model_metadata(model_paths, model_format="safetensors"):
"""Read metadata from model files."""
metadata = {}
if model_format == "safetensors":
# Read metadata from the first safetensors file
if model_paths:
with open(model_paths[0], 'rb') as f:
header_size = int.from_bytes(f.read(8), 'little')
header_json = f.read(header_size).decode('utf-8')
header = json.loads(header_json)
metadata = header.get('__metadata__', {})
elif model_format in ["pth", "pt", "ckpt"]:
# Try to extract metadata from checkpoint files
if model_paths:
checkpoint = torch.load(model_paths[0], map_location="cpu")
if isinstance(checkpoint, dict):
# Look for common metadata keys
for key in ["hyperparameters", "args", "config", "metadata"]:
if key in checkpoint:
metadata[key] = checkpoint[key]
return metadata
def extract_base_name_from_sharded_files(model_paths):
"""Extract a common base name from sharded files."""
if not model_paths:
return "model"
if len(model_paths) == 1:
# Single file case
base_name = os.path.splitext(os.path.basename(model_paths[0]))[0]
# Remove common suffixes
for suffix in ["-fp8", "-fp16", "-bf16", "-32", "-16"]:
if base_name.endswith(suffix):
base_name = base_name[:-len(suffix)]
return base_name
# Multiple files case - find common prefix
base_names = [os.path.splitext(os.path.basename(p))[0] for p in model_paths]
# Handle Hugging Face pattern: model-00001-of-00002.safetensors
# Extract the part before the shard numbering
if all("-of-" in name for name in base_names):
# All files follow the "model-XXXXX-of-YYYYY" pattern
common_parts = []
for name in base_names:
# Split at the shard numbering
parts = name.split("-")
if len(parts) >= 3 and parts[-2].isdigit() and parts[-1].startswith("of"):
# Remove the last two parts (shard number and total)
common_part = "-".join(parts[:-2])
common_parts.append(common_part)
else:
common_parts.append(name)
# Use the most common base name
from collections import Counter
base_name = Counter(common_parts).most_common(1)[0][0]
return base_name
# Fallback: find common prefix
common_prefix = ""
for chars in zip(*base_names):
if len(set(chars)) == 1:
common_prefix += chars[0]
else:
break
# Clean up the common prefix
base_name = re.sub(r'[-_]+$', '', common_prefix)
if not base_name:
base_name = "model"
return base_name
def convert_model_to_fp8(model_paths, output_dir, fp8_format,
model_format="safetensors", progress=gr.Progress()):
"""Simple and fast FP8 conversion without recovery strategies."""
progress(0.05, desc=f"Starting FP8 conversion for {model_format}...")
try:
metadata = read_model_metadata(model_paths, model_format)
progress(0.1, desc="Loaded metadata.")
# Load model with progress tracking
state_dict = load_model_files(
model_paths,
model_format,
progress_callback=lambda msg: progress(0.15, desc=msg)
)
progress(0.25, desc=f"Loaded {len(model_paths)} model files with {len(state_dict)} tensors.")
# Setup FP8 format
fp8_dtype = torch.float8_e5m2 if fp8_format == "e5m2" else torch.float8_e4m3fn
# Initialize outputs
sd_fp8 = {}
conversion_stats = {
"total_tensors": len(state_dict),
"converted_tensors": 0,
"skipped_tensors": 0,
"skipped_reasons": []
}
# Process each tensor
total = len(state_dict)
for i, key in enumerate(state_dict):
if i % 100 == 0: # Update progress every 100 tensors for speed
progress(0.3 + 0.6 * (i / total), desc=f"Converting {i}/{total} tensors...")
weight = state_dict[key]
# Convert only float tensors to FP8
if weight.dtype in [torch.float16, torch.float32, torch.bfloat16]:
fp8_weight = weight.to(fp8_dtype)
sd_fp8[key] = fp8_weight
conversion_stats["converted_tensors"] += 1
else:
# Keep non-float tensors as-is (e.g., ints, bools)
sd_fp8[key] = weight
conversion_stats["skipped_tensors"] += 1
conversion_stats["skipped_reasons"].append(f"{key}: {weight.dtype}")
# Extract base name for output files
base_name = extract_base_name_from_sharded_files(model_paths)
# Save FP8 model
fp8_path = os.path.join(output_dir, f"{base_name}-fp8-{fp8_format}.safetensors")
save_file(sd_fp8, fp8_path, metadata={
"format": model_format,
"fp8_format": fp8_format,
"original_files": str(len(model_paths)),
"conversion_stats": json.dumps(conversion_stats),
**metadata
})
progress(0.95, desc="Saved FP8 file.")
# Generate stats message
stats_msg = f"β
FP8 ({fp8_format}) conversion complete!\n"
stats_msg += f"- Total tensors: {conversion_stats['total_tensors']}\n"
stats_msg += f"- Converted to FP8: {conversion_stats['converted_tensors']}\n"
stats_msg += f"- Skipped (non-float): {conversion_stats['skipped_tensors']}\n"
stats_msg += f"- Output file: {os.path.basename(fp8_path)}\n"
if conversion_stats["skipped_tensors"] > 0:
stats_msg += "\nβ οΈ Some tensors were skipped (non-float types):\n"
for i, reason in enumerate(conversion_stats["skipped_reasons"][:5]): # Show first 5
stats_msg += f" - {reason}\n"
if len(conversion_stats["skipped_reasons"]) > 5:
stats_msg += f" - ... and {len(conversion_stats['skipped_reasons']) - 5} more\n"
progress(1.0, desc="β
FP8 conversion complete!")
return True, stats_msg, conversion_stats, fp8_path, None
except Exception as e:
traceback.print_exc()
return False, str(e), None, None, None
def parse_hf_url(url):
url = url.strip().rstrip("/")
if not url.startswith("https://huggingface.co/"):
raise ValueError("URL must start with https://huggingface.co/")
path = url.replace("https://huggingface.co/", "")
parts = path.split("/")
if len(parts) < 2:
raise ValueError("Invalid repo format")
repo_id = "/".join(parts[:2])
subfolder = ""
if len(parts) > 3 and parts[2] == "tree":
subfolder = "/".join(parts[4:]) if len(parts) > 4 else ""
elif len(parts) > 2:
subfolder = "/".join(parts[2:])
return repo_id, subfolder
def download_single_file(args):
"""Helper function for parallel downloads."""
repo_id, filename, subfolder, cache_dir, token = args
try:
path = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder,
cache_dir=cache_dir,
token=token,
resume_download=True
)
return path, None
except Exception as e:
return None, str(e)
def find_sharded_safetensors_files(repo_id, subfolder=None, hf_token=None, max_shards=50):
"""Find all sharded safetensors files in a repository."""
try:
# List all files in the repository
repo_files = list_repo_files(repo_id, repo_type="model", token=hf_token)
# Filter for safetensors files in the subfolder
if subfolder:
pattern = f"{subfolder}/" if not subfolder.endswith("/") else subfolder
safetensors_files = [f for f in repo_files if f.endswith('.safetensors') and f.startswith(pattern)]
# Remove subfolder prefix
safetensors_files = [f[len(pattern):] for f in safetensors_files if len(f) > len(pattern)]
else:
safetensors_files = [f for f in repo_files if f.endswith('.safetensors')]
# Check if files follow sharding pattern
sharded_files = []
single_files = []
for f in safetensors_files:
# Check for sharding pattern: model-XXXXX-of-YYYYY.safetensors
match = re.search(r'-\d{5}-of-\d{5}\.safetensors$', f)
if match:
sharded_files.append(f)
else:
single_files.append(f)
# If we have sharded files, return them sorted by shard number
if sharded_files:
# Sort by shard number for consistent ordering
def extract_shard_num(filename):
match = re.search(r'-(\d{5})-of-\d{5}\.safetensors$', filename)
return int(match.group(1)) if match else 0
sharded_files.sort(key=extract_shard_num)
# Limit number of shards to prevent accidental downloads of huge models
if len(sharded_files) > max_shards:
raise ValueError(f"Too many shards found ({len(sharded_files)}). Maximum allowed is {max_shards}. "
f"Please specify a more specific pattern.")
return sharded_files
elif single_files:
# Return single files (non-sharded)
return single_files
else:
return []
except Exception as e:
print(f"Error listing repository files: {e}")
return []
def download_model_files(source_type, repo_url, filename_pattern, model_format, hf_token=None, progress=gr.Progress()):
temp_dir = tempfile.mkdtemp()
try:
if source_type == "huggingface":
repo_id, subfolder = parse_hf_url(repo_url)
if model_format == "safetensors":
# Handle different patterns for safetensors
if filename_pattern == "auto" or filename_pattern == "":
# Auto-detect sharded files
progress(0.1, desc="Discovering model files...")
found_files = find_sharded_safetensors_files(repo_id, subfolder, hf_token)
if not found_files:
raise ValueError("No safetensors files found in repository")
progress(0.2, desc=f"Found {len(found_files)} shard(s). Downloading...")
# Download files in parallel for better performance
model_paths = []
download_args = [
(repo_id, filename, subfolder, temp_dir, hf_token)
for filename in found_files
]
with ThreadPoolExecutor(max_workers=4) as executor:
futures = {executor.submit(download_single_file, args): args[1] for args in download_args}
for i, future in enumerate(as_completed(futures)):
filename = futures[future]
try:
path, error = future.result()
if error:
raise Exception(f"Failed to download {filename}: {error}")
model_paths.append(path)
progress(0.2 + 0.6 * (i + 1) / len(futures),
desc=f"Downloaded {i+1}/{len(futures)}: {filename}")
except Exception as e:
raise e
return model_paths, temp_dir
elif "*" in filename_pattern:
# For wildcard patterns, download the entire directory and filter
progress(0.1, desc="Downloading repository snapshot...")
local_dir = os.path.join(temp_dir, "download")
snapshot_download(
repo_id=repo_id,
subfolder=subfolder or None,
local_dir=local_dir,
token=hf_token,
resume_download=True
)
# Find files matching the pattern
if subfolder:
pattern_dir = os.path.join(local_dir, subfolder)
else:
pattern_dir = local_dir
model_files = glob.glob(os.path.join(pattern_dir, filename_pattern))
if not model_files:
raise ValueError(f"No files found matching pattern: {filename_pattern}")
# Limit number of files
if len(model_files) > 50:
raise ValueError(f"Too many files found ({len(model_files)}). Please use a more specific pattern.")
return model_files, temp_dir
else:
# SINGLE FILE SAFETENSORS - separate from shard discovery
progress(0.2, desc=f"Downloading {filename_pattern}...")
model_path = hf_hub_download(
repo_id=repo_id,
filename=filename_pattern,
subfolder=subfolder or None,
cache_dir=temp_dir,
token=hf_token,
resume_download=True
)
return [model_path], temp_dir
else:
# For non-safetensors formats
if "*" in filename_pattern:
raise ValueError("Wildcards only supported for safetensors format")
progress(0.2, desc=f"Downloading {filename_pattern}...")
model_path = hf_hub_download(
repo_id=repo_id,
filename=filename_pattern,
subfolder=subfolder or None,
cache_dir=temp_dir,
token=hf_token,
resume_download=True
)
return [model_path], temp_dir
elif source_type == "modelscope":
if not MODELScope_AVAILABLE:
raise ImportError("ModelScope not installed")
repo_id = repo_url.strip()
if model_format == "safetensors" and "*" in filename_pattern:
# For ModelScope, we need to handle sharded files differently
# This is a simplified approach - in a real implementation, you might need to list files first
raise NotImplementedError("Pattern matching for ModelScope sharded files not fully implemented")
else:
progress(0.2, desc=f"Downloading {filename_pattern}...")
model_path = ms_file_download(model_id=repo_id, file_path=filename_pattern)
return [model_path], temp_dir
else:
raise ValueError("Unknown source")
except Exception as e:
shutil.rmtree(temp_dir, ignore_errors=True)
raise e
def upload_to_target(target_type, new_repo_id, output_dir, fp8_format, hf_token=None, modelscope_token=None, private_repo=False):
if target_type == "huggingface":
api = HfApi(token=hf_token)
api.create_repo(repo_id=new_repo_id, private=private_repo, repo_type="model", exist_ok=True)
api.upload_folder(repo_id=new_repo_id, folder_path=output_dir, repo_type="model", token=hf_token)
return f"https://huggingface.co/{new_repo_id}"
elif target_type == "modelscope":
api = ModelScopeApi()
if modelscope_token:
api.login(modelscope_token)
api.push_model(model_id=new_repo_id, model_dir=output_dir)
return f"https://modelscope.cn/models/{new_repo_id}"
else:
raise ValueError("Unknown target")
def process_and_upload_fp8(
source_type,
repo_url,
filename_pattern,
model_format,
fp8_format,
target_type,
new_repo_id,
hf_token,
modelscope_token,
private_repo,
progress=gr.Progress()
):
if not re.match(r"^[a-zA-Z0-9._-]+/[a-zA-Z0-9._-]+$", new_repo_id):
return None, "β Invalid repo ID format. Use 'username/model-name'.", "", ""
if source_type == "huggingface" and not hf_token:
return None, "β Hugging Face token required for source.", "", ""
if target_type == "huggingface" and not hf_token:
return None, "β Hugging Face token required for target.", "", ""
temp_dir = None
output_dir = tempfile.mkdtemp()
try:
progress(0.05, desc="Downloading model...")
model_paths, temp_dir = download_model_files(
source_type, repo_url, filename_pattern, model_format, hf_token, progress
)
progress(0.8, desc="Converting to FP8...")
success, msg, stats, fp8_path, _ = convert_model_to_fp8(
model_paths, output_dir, fp8_format, model_format, progress
)
if not success:
return None, f"β Conversion failed: {msg}", "", ""
progress(0.9, desc="Uploading...")
repo_url_final = upload_to_target(
target_type, new_repo_id, output_dir, fp8_format, hf_token, modelscope_token, private_repo
)
# Generate README
if len(model_paths) == 1:
original_filename = os.path.basename(model_paths[0])
else:
original_filename = f"{len(model_paths)} sharded files"
# Add the pattern if not auto
if filename_pattern != "auto":
original_filename += f" matching '{filename_pattern}'"
fp8_filename = os.path.basename(fp8_path)
readme = f"""---
library_name: diffusers
tags:
- fp8
- safetensors
- converted-by-gradio
---
# FP8 Model Conversion
- **Source**: `{repo_url}`
- **Original File(s)**: `{original_filename}`
- **Original Format**: `{model_format}`
- **FP8 Format**: `{fp8_format.upper()}`
- **FP8 File**: `{fp8_filename}`
## Usage
```python
from safetensors.torch import load_file
import torch
# Load FP8 model
fp8_state = load_file("{fp8_filename}")
# Convert tensors back to float32 for computation (auto-converted by PyTorch)
model.load_state_dict(fp8_state)
```
> **Note**: FP8 tensors are automatically converted to float32 when loaded in PyTorch.
> Requires PyTorch β₯ 2.1 for FP8 support.
## Statistics
- **Total tensors**: {stats['total_tensors']}
- **Converted to FP8**: {stats['converted_tensors']}
- **Skipped (non-float)**: {stats['skipped_tensors']}
"""
with open(os.path.join(output_dir, "README.md"), "w") as f:
f.write(readme)
if target_type == "huggingface":
HfApi(token=hf_token).upload_file(
path_or_fileobj=os.path.join(output_dir, "README.md"),
path_in_repo="README.md",
repo_id=new_repo_id,
repo_type="model",
token=hf_token
)
progress(1.0, desc="β
Done!")
# Generate result HTML
result_html = f"""
β
Success!
Model uploaded to: <a href="{repo_url_final}" target="_blank">{new_repo_id}</a>
- FP8 model: `{fp8_filename}`
- Converted {stats['converted_tensors']} tensors to {fp8_format.upper()}
"""
return (gr.HTML(result_html),
"β
FP8 conversion successful!",
msg,
"")
except Exception as e:
traceback.print_exc()
return None, f"β Error: {str(e)}", "", ""
finally:
if temp_dir:
shutil.rmtree(temp_dir, ignore_errors=True)
shutil.rmtree(output_dir, ignore_errors=True)
with gr.Blocks(title="Fast FP8 Model Converter") as demo:
gr.Markdown("# β‘ Fast FP8 Model Converter")
gr.Markdown("Convert model files (safetensors, pth, ckpt) β **FP8**. Supports sharded files with auto-discovery. Simple and fast!")
with gr.Row():
with gr.Column():
source_type = gr.Radio(["huggingface", "modelscope"], value="huggingface", label="Source")
repo_url = gr.Textbox(label="Repo URL or ID", placeholder="https://huggingface.co/... or modelscope-id")
with gr.Row():
model_format = gr.Dropdown(
choices=["safetensors", "pth", "pt", "ckpt"],
value="safetensors",
label="Model Format"
)
filename_pattern = gr.Textbox(
label="Filename or Pattern",
placeholder="auto (detects sharded files) or model-*.safetensors",
value="auto"
)
with gr.Accordion("FP8 Settings", open=True):
fp8_format = gr.Radio(["e4m3fn", "e5m2"], value="e5m2", label="FP8 Format")
with gr.Accordion("Authentication", open=False):
hf_token = gr.Textbox(label="Hugging Face Token", type="password")
modelscope_token = gr.Textbox(label="ModelScope Token (optional)", type="password", visible=MODELScope_AVAILABLE)
with gr.Column():
target_type = gr.Radio(["huggingface", "modelscope"], value="huggingface", label="Target")
new_repo_id = gr.Textbox(label="New Repo ID", placeholder="user/model-fp8")
private_repo = gr.Checkbox(label="Private Repository (HF only)", value=False)
status_output = gr.Markdown()
detailed_log = gr.Textbox(label="Processing Log", interactive=False, lines=10)
recovery_summary = gr.Textbox(label="Additional Info", interactive=False, lines=3)
convert_btn = gr.Button("π Convert & Upload", variant="primary")
repo_link_output = gr.HTML()
convert_btn.click(
fn=process_and_upload_fp8,
inputs=[
source_type,
repo_url,
filename_pattern,
model_format,
fp8_format,
target_type,
new_repo_id,
hf_token,
modelscope_token,
private_repo
],
outputs=[repo_link_output, status_output, detailed_log, recovery_summary],
show_progress=True
)
gr.Examples(
examples=[
[
"huggingface",
"https://huggingface.co/stabilityai/sdxl-vae",
"auto",
"safetensors",
"e4m3fn",
"huggingface"
],
[
"huggingface",
"https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main/text_encoder",
"auto",
"safetensors",
"e5m2",
"huggingface"
],
[
"huggingface",
"https://huggingface.co/Yabo/FramePainter/tree/main",
"auto",
"safetensors",
"e5m2",
"huggingface"
],
[
"huggingface",
"https://huggingface.co/stabilityai/stable-diffusion-2-1",
"model-*.safetensors",
"safetensors",
"e5m2",
"huggingface"
],
[
"huggingface",
"https://huggingface.co/CompVis/stable-diffusion-v1-4",
"sd-v1-4.ckpt",
"ckpt",
"e5m2",
"huggingface"
]
],
inputs=[source_type, repo_url, filename_pattern, model_format, fp8_format, target_type],
label="Example Conversions",
cache_examples=False
)
gr.Markdown("""
## π Fast FP8 Conversion Tool
This tool provides **fast and simple FP8 conversion** for various model formats:
### **Supported Formats:**
- **Safetensors**: Modern, secure format. Supports sharded files (e.g., `model-00001-of-00005.safetensors`)
- **PTH/PT**: PyTorch checkpoint files
- **CKPT**: Checkpoint files (commonly used for stable diffusion models)
### **Shard Support:**
- **Unlimited Shards**: Supports any number of sharded files (2, 5, 10, 20+)
- **Auto-Detection**: Automatically finds all shards when using "auto" pattern
- **Parallel Downloads**: Downloads multiple shards simultaneously (up to 4 at once)
- **Memory Efficient**: Processes files efficiently to manage memory
### **Performance Features:**
- **Fast Conversion**: Simple dtype conversion without complex recovery strategies
- **Batch Processing**: Processes tensors in batches for better performance
- **Progress Tracking**: Shows detailed progress for each step
### **How It Works:**
1. **Discovery**: Automatically detects sharded files or uses your specified pattern
2. **Download**: Downloads files in parallel for maximum speed
3. **Conversion**: Converts float tensors to FP8, leaves other types unchanged
4. **Upload**: Uploads the converted model to your target repository
### **Usage Tips:**
- Use "auto" pattern to automatically detect all sharded safetensors files
- Use `model-*.safetensors` to match specific shard patterns
- For single files, just enter the filename (e.g., `model.safetensors`)
- FP8 conversion reduces model size by ~4x compared to FP32
- FP8 tensors are automatically converted to float32 when loaded in PyTorch
> **Note**: This is a simple conversion tool. For precision recovery options, use the advanced version.
""")
demo.launch() |