new03 / app.py
codemichaeld's picture
Update app.py
0d6c60b verified
raw
history blame
12.1 kB
import gradio as gr
import os
import tempfile
import shutil
import re
import json
import datetime
from pathlib import Path
from huggingface_hub import HfApi, hf_hub_download
from safetensors.torch import load_file, save_file
import torch
# Optional ModelScope integration
try:
from modelscope.hub.snapshot_download import snapshot_download as ms_snapshot_download
from modelscope.hub.file_download import model_file_download as ms_file_download
from modelscope.hub.api import HubApi as ModelScopeApi
MODELScope_AVAILABLE = True
except ImportError:
MODELScope_AVAILABLE = False
# --- Conversion Function: Safetensors β†’ FP8 Safetensors ---
def convert_safetensors_to_fp8(safetensors_path, output_dir, fp8_format, progress=gr.Progress()):
progress(0.1, desc="Starting FP8 conversion...")
try:
def read_safetensors_metadata(path):
with open(path, 'rb') as f:
header_size = int.from_bytes(f.read(8), 'little')
header_json = f.read(header_size).decode('utf-8')
header = json.loads(header_json)
return header.get('__metadata__', {})
metadata = read_safetensors_metadata(safetensors_path)
progress(0.3, desc="Loaded model metadata.")
state_dict = load_file(safetensors_path)
progress(0.5, desc="Loaded model weights.")
if fp8_format == "e5m2":
fp8_dtype = torch.float8_e5m2
else:
fp8_dtype = torch.float8_e4m3fn
sd_pruned = {}
total = len(state_dict)
for i, key in enumerate(state_dict):
progress(0.5 + 0.4 * (i / total), desc=f"Converting tensor {i+1}/{total} to FP8 ({fp8_format})...")
if state_dict[key].dtype in [torch.float16, torch.float32, torch.bfloat16]:
sd_pruned[key] = state_dict[key].to(fp8_dtype)
else:
sd_pruned[key] = state_dict[key]
base_name = os.path.splitext(os.path.basename(safetensors_path))[0]
output_path = os.path.join(output_dir, f"{base_name}-fp8-{fp8_format}.safetensors")
save_file(sd_pruned, output_path, metadata={"format": "pt", "fp8_format": fp8_format, **metadata})
progress(0.9, desc="Saved FP8 safetensors file.")
progress(1.0, desc="FP8 conversion complete!")
return True, f"Model successfully pruned to FP8 ({fp8_format})."
except Exception as e:
return False, str(e)
# --- Source download helper ---
def download_safetensors_file(
source_type,
repo_url,
filename,
hf_token=None,
modelscope_token=None,
progress=gr.Progress()
):
temp_dir = tempfile.mkdtemp()
try:
if source_type == "huggingface":
clean_url = repo_url.strip().rstrip("/")
if "huggingface.co" not in clean_url:
raise ValueError("Invalid Hugging Face URL")
src_repo_id = clean_url.replace("https://huggingface.co/", "")
safetensors_path = hf_hub_download(
repo_id=src_repo_id,
filename=filename,
cache_dir=temp_dir,
token=hf_token
)
elif source_type == "modelscope":
if not MODELScope_AVAILABLE:
raise ImportError("ModelScope not installed. Install with: pip install modelscope")
clean_url = repo_url.strip().rstrip("/")
if "modelscope.cn" in clean_url:
src_repo_id = "/".join(clean_url.split("/")[-2:])
else:
src_repo_id = repo_url.strip()
if modelscope_token:
os.environ["MODELSCOPE_CACHE"] = temp_dir
safetensors_path = ms_file_download(
model_id=src_repo_id,
file_path=filename,
token=modelscope_token
)
else:
safetensors_path = ms_file_download(
model_id=src_repo_id,
file_path=filename
)
else:
raise ValueError("Unknown source type")
return safetensors_path, temp_dir
except Exception as e:
shutil.rmtree(temp_dir, ignore_errors=True)
raise e
# --- Upload helper ---
def upload_to_target(
target_type,
new_repo_id,
output_dir,
fp8_format,
hf_token=None,
modelscope_token=None,
private_repo=False,
progress=gr.Progress()
):
if target_type == "huggingface":
if not hf_token:
raise ValueError("Hugging Face token required")
api = HfApi(token=hf_token)
api.create_repo(
repo_id=new_repo_id,
private=private_repo,
repo_type="model",
exist_ok=True
)
api.upload_folder(
repo_id=new_repo_id,
folder_path=output_dir,
repo_type="model",
token=hf_token,
commit_message=f"Upload FP8 ({fp8_format}) model"
)
return f"https://huggingface.co/{new_repo_id}"
elif target_type == "modelscope":
if not MODELScope_AVAILABLE:
raise ImportError("ModelScope not installed")
api = ModelScopeApi()
if modelscope_token:
api.login(modelscope_token)
# ModelScope requires model_type and license
api.push_model(
model_id=new_repo_id,
model_dir=output_dir,
commit_message=f"Upload FP8 ({fp8_format}) model"
)
return f"https://modelscope.cn/models/{new_repo_id}"
else:
raise ValueError("Unknown target type")
# --- Main Processing Function ---
def process_and_upload_fp8(
source_type,
repo_url,
safetensors_filename,
fp8_format,
target_type,
new_repo_id,
hf_token,
modelscope_token,
private_repo,
progress=gr.Progress()
):
required_fields = [repo_url, safetensors_filename, new_repo_id]
if source_type == "huggingface":
required_fields.append(hf_token)
if target_type == "huggingface":
required_fields.append(hf_token)
if target_type == "modelscope" and modelscope_token:
required_fields.append(modelscope_token)
if not all(required_fields):
return None, "❌ Error: Please fill in all required fields.", ""
if not re.match(r"^[a-zA-Z0-9._-]+/[a-zA-Z0-9._-]+$", new_repo_id):
return None, "❌ Invalid repository ID format. Use 'username/model-name'.", ""
temp_dir = None
output_dir = tempfile.mkdtemp()
try:
# Authenticate & download
progress(0.05, desc="Authenticating and downloading...")
safetensors_path, temp_dir = download_safetensors_file(
source_type=source_type,
repo_url=repo_url,
filename=safetensors_filename,
hf_token=hf_token,
modelscope_token=modelscope_token,
progress=progress
)
progress(0.25, desc="Download complete.")
# Convert
success, msg = convert_safetensors_to_fp8(safetensors_path, output_dir, fp8_format, progress)
if not success:
return None, f"❌ Conversion failed: {msg}", ""
# Upload
progress(0.92, desc="Uploading model...")
repo_url_final = upload_to_target(
target_type=target_type,
new_repo_id=new_repo_id,
output_dir=output_dir,
fp8_format=fp8_format,
hf_token=hf_token,
modelscope_token=modelscope_token,
private_repo=private_repo,
progress=progress
)
# README
base_name = os.path.splitext(safetensors_filename)[0]
fp8_filename = f"{base_name}-fp8-{fp8_format}.safetensors"
readme = f"""---
library_name: diffusers
tags:
- fp8
- safetensors
- pruned
- diffusion
- converted-by-gradio
- fp8-{fp8_format}
---
# FP8 Pruned Model ({fp8_format.upper()})
Converted from: `{repo_url}`
File: `{safetensors_filename}` β†’ `{fp8_filename}`
Quantization: **FP8 ({fp8_format.upper()})**
Converted on: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
> ⚠️ Requires PyTorch β‰₯ 2.1 and compatible hardware for FP8 acceleration.
"""
readme_path = os.path.join(output_dir, "README.md")
with open(readme_path, "w") as f:
f.write(readme)
# Re-upload README if needed (for ModelScope, already included; for HF, upload separately)
if target_type == "huggingface":
HfApi(token=hf_token).upload_file(
path_or_fileobj=readme_path,
path_in_repo="README.md",
repo_id=new_repo_id,
repo_type="model",
token=hf_token
)
progress(1.0, desc="βœ… Done!")
result_html = f"""
βœ… Success!
Your FP8 model is uploaded to: <a href="{repo_url_final}" target="_blank">{new_repo_id}</a>
Source: {source_type.title()} β†’ Target: {target_type.title()}
"""
return gr.HTML(result_html), "βœ… FP8 conversion and upload successful!", ""
except Exception as e:
return None, f"❌ Error: {str(e)}", ""
finally:
if temp_dir:
shutil.rmtree(temp_dir, ignore_errors=True)
shutil.rmtree(output_dir, ignore_errors=True)
# --- Gradio UI ---
with gr.Blocks(title="Safetensors β†’ FP8 Pruner (HF + ModelScope)") as demo:
gr.Markdown("# πŸ”„ Safetensors to FP8 Pruner")
gr.Markdown("Convert `.safetensors` models to **FP8** and upload to **Hugging Face** or **ModelScope**.")
with gr.Row():
with gr.Column():
source_type = gr.Radio(
choices=["huggingface", "modelscope"],
value="huggingface",
label="Source Platform"
)
repo_url = gr.Textbox(
label="Source Repository URL",
placeholder="e.g., https://huggingface.co/Yabo/FramePainter OR your-modelscope-id",
info="Hugging Face URL or ModelScope model ID"
)
safetensors_filename = gr.Textbox(
label="Safetensors Filename",
placeholder="unet_diffusion_pytorch_model.safetensors"
)
fp8_format = gr.Radio(
choices=["e4m3fn", "e5m2"],
value="e5m2",
label="FP8 Format",
info="E5M2: wider range; E4M3FN: better near-zero precision"
)
hf_token = gr.Textbox(
label="Hugging Face Token (if using HF)",
type="password"
)
modelscope_token = gr.Textbox(
label="ModelScope Token (optional)",
type="password",
visible=MODELScope_AVAILABLE
)
with gr.Column():
target_type = gr.Radio(
choices=["huggingface", "modelscope"],
value="huggingface",
label="Target Platform"
)
new_repo_id = gr.Textbox(
label="New Repository ID",
placeholder="your-username/my-model-fp8"
)
private_repo = gr.Checkbox(label="Make Private (HF only)", value=False)
convert_btn = gr.Button("πŸš€ Convert & Upload", variant="primary")
with gr.Row():
status_output = gr.Markdown()
repo_link_output = gr.HTML()
convert_btn.click(
fn=process_and_upload_fp8,
inputs=[
source_type,
repo_url,
safetensors_filename,
fp8_format,
target_type,
new_repo_id,
hf_token,
modelscope_token,
private_repo
],
outputs=[repo_link_output, status_output],
show_progress=True
)
gr.Examples(
examples=[
["huggingface", "https://huggingface.co/Yabo/FramePainter", "unet_diffusion_pytorch_model.safetensors", "e5m2", "huggingface"]
],
inputs=[source_type, repo_url, safetensors_filename, fp8_format, target_type]
)
demo.launch()