Spaces:
Runtime error
Runtime error
File size: 15,658 Bytes
f6368ba cebf241 f6368ba 4346d75 f6368ba d6c2e7d f6368ba a4b4b11 f6368ba cb40cb1 d6c2e7d f6368ba cb40cb1 1332b22 7bda99d 1332b22 4e3b77d 7bda99d 1332b22 93a2fe9 1332b22 f6368ba 1332b22 7bda99d f6b98a6 f6368ba 51b5fb9 f6368ba cebf241 f6b98a6 cebf241 93af3e2 f6368ba 4e3b77d f6368ba cebf241 f6368ba a4b4b11 f6368ba c5f42d3 f6368ba c5f42d3 f6368ba cebf241 f6368ba 93a2fe9 f6368ba fd70ade f6368ba c5f42d3 f6368ba c5f42d3 f6368ba 1a431a3 f6368ba c5f42d3 f6368ba c1ad781 f6368ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
import logging
import random
import warnings
import os
import gradio as gr
import numpy as np
import spaces
import torch
from gradio_imageslider import ImageSlider
from PIL import Image
from huggingface_hub import hf_hub_download
import subprocess
import sys
import tempfile
from typing import Sequence, Mapping, Any, Union
import asyncio
import shutil
# Copy functions from FluxSimpleUpscaler.txt
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
try:
return obj[index]
except KeyError:
return obj["result"][index]
def find_path(name: str, path: str = None) -> str:
if path is None:
path = os.getcwd()
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} found: {path_name}")
return path_name
parent_directory = os.path.dirname(path)
if parent_directory == path:
return None
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.insert(0, comfyui_path)
print(f"'{comfyui_path}' inserted to sys.path")
def add_extra_model_paths() -> None:
try:
from main import load_extra_path_config
except ImportError:
print("Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead.")
from utils.extra_config import load_extra_path_config
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
def import_custom_nodes() -> None:
import asyncio
import execution
from nodes import init_extra_nodes
import server
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
loop.run_until_complete(init_extra_nodes())
# Setup ComfyUI and custom nodes
if not os.path.exists("ComfyUI"):
subprocess.run(["git", "clone", "https://github.com/comfyanonymous/ComfyUI.git"])
subprocess.run(["pip", "install", "-r", "ComfyUI/requirements.txt"])
custom_node_path = "ComfyUI/custom_nodes/ComfyUI_UltimateSDUpscale"
if not os.path.exists(custom_node_path):
subprocess.run(["git", "clone", "https://github.com/ssitu/ComfyUI_UltimateSDUpscale.git", custom_node_path])
subprocess.run(["pip", "install", "spandrel", "kornia"])
# Create model directories
os.makedirs("ComfyUI/models/diffusion_models", exist_ok=True)
os.makedirs("ComfyUI/models/clip", exist_ok=True)
os.makedirs("ComfyUI/models/vae", exist_ok=True)
os.makedirs("ComfyUI/models/upscale_models", exist_ok=True)
# Download models if not present
diffusion_path = "ComfyUI/models/diffusion_models/flux1-dev-fp8.safetensors"
if not os.path.exists(diffusion_path):
hf_hub_download("Kijai/flux-fp8", "flux1-dev-fp8.safetensors", local_dir="ComfyUI/models/diffusion_models")
clip_l_path = "ComfyUI/models/clip/clip_l.safetensors"
if not os.path.exists(clip_l_path):
hf_hub_download("comfyanonymous/flux_text_encoders", "clip_l.safetensors", local_dir="ComfyUI/models/clip")
t5_path = "ComfyUI/models/clip/t5xxl_fp8_e4m3fn.safetensors"
if not os.path.exists(t5_path):
hf_hub_download("comfyanonymous/flux_text_encoders", "t5xxl_fp8_e4m3fn.safetensors", local_dir="ComfyUI/models/clip")
vae_path = "ComfyUI/models/vae/ae.safetensors"
if not os.path.exists(vae_path):
hf_hub_download("black-forest-labs/FLUX.1-dev", "ae.safetensors", local_dir="ComfyUI/models/vae")
esrgan_x2_path = "ComfyUI/models/upscale_models/RealESRGAN_x2.pth"
if not os.path.exists(esrgan_x2_path):
hf_hub_download("ai-forever/Real-ESRGAN", "RealESRGAN_x2.pth", local_dir="ComfyUI/models/upscale_models")
esrgan_x4_path = "ComfyUI/models/upscale_models/RealESRGAN_x4.pth"
if not os.path.exists(esrgan_x4_path):
hf_hub_download("ai-forever/Real-ESRGAN", "RealESRGAN_x4.pth", local_dir="ComfyUI/models/upscale_models")
# Add ComfyUI to path and import custom nodes
add_comfyui_directory_to_sys_path()
add_extra_model_paths()
from folder_paths import add_model_folder_path
comfy_dir = find_path("ComfyUI")
add_model_folder_path("unet", os.path.join(comfy_dir, "models", "diffusion_models"))
import_custom_nodes()
from nodes import NODE_CLASS_MAPPINGS
css = """
#col-container {
margin: 0 auto;
max-width: 800px;
}
.main-header {
text-align: center;
margin-bottom: 2rem;
}
"""
MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 8192 * 8192
def make_divisible_by_16(size):
return ((size // 16) * 16) if (size % 16) < 8 else ((size // 16 + 1) * 16)
def process_input(input_image, upscale_factor):
w, h = input_image.size
w_original, h_original = w, h
was_resized = False
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
gr.Info(f"Requested output image is too large. Resizing input to fit within pixel budget.")
target_input_pixels = MAX_PIXEL_BUDGET / (upscale_factor ** 2)
scale = (target_input_pixels / (w * h)) ** 0.5
new_w = max(16, int(w * scale) // 16 * 16)
new_h = max(16, int(h * scale) // 16 * 16)
input_image = input_image.resize((new_w, new_h), resample=Image.LANCZOS)
was_resized = True
return input_image, w_original, h_original, was_resized
import requests
def load_image_from_url(url):
try:
response = requests.get(url, stream=True)
response.raise_for_status()
return Image.open(response.raw)
except Exception as e:
raise gr.Error(f"Failed to load image from URL: {e}")
def tensor_to_pil(tensor):
tensor = tensor.cpu().clamp(0, 1) * 255
img = tensor.numpy().astype(np.uint8)[0]
return Image.fromarray(img)
@spaces.GPU(duration=120)
def enhance_image(
image_input,
image_url,
seed,
randomize_seed,
upscale_factor,
denoising_strength,
custom_prompt,
progress=gr.Progress(track_tqdm=True),
):
if image_input is not None:
true_input_image = image_input
elif image_url:
true_input_image = load_image_from_url(image_url)
else:
raise gr.Error("Please provide an image (upload or URL)")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
input_image, w_original, h_original, was_resized = process_input(true_input_image, upscale_factor)
if upscale_factor == 2:
upscale_model_name = "RealESRGAN_x2.pth"
else:
upscale_model_name = "RealESRGAN_x4.pth"
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
input_image.save(tmp.name)
temp_path = tmp.name
image_base = os.path.basename(temp_path)
comfy_dir = find_path("ComfyUI")
input_dir = os.path.join(comfy_dir, "input")
input_image_path = os.path.join(input_dir, image_base)
shutil.copy(temp_path, input_image_path)
with torch.inference_mode():
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
dualcliploader_res = dualcliploader.load_clip(
clip_name1="clip_l.safetensors",
clip_name2="t5xxl_fp8_e4m3fn.safetensors",
type="flux",
)
clip = get_value_at_index(dualcliploader_res, 0)
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
positive_res = cliptextencode.encode(
text=custom_prompt,
clip=clip
)
negative_res = cliptextencode.encode(
text="",
clip=clip
)
upscalemodelloader = NODE_CLASS_MAPPINGS["UpscaleModelLoader"]()
upscalemodelloader_res = upscalemodelloader.load_model(
model_name=upscale_model_name
)
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
vaeloader_res = vaeloader.load_vae(vae_name="ae.safetensors")
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
unetloader_res = unetloader.load_unet(
unet_name="flux1-dev-fp8.safetensors", weight_dtype="fp8_e4m3fn"
)
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
loadimage_res = loadimage.load_image(image=image_base)
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
fluxguidance_res = fluxguidance.append(
guidance=30, conditioning=get_value_at_index(positive_res, 0)
)
ultimatesdupscale = NODE_CLASS_MAPPINGS["UltimateSDUpscale"]()
usd_res = ultimatesdupscale.upscale(
upscale_by=upscale_factor,
seed=seed,
steps=25,
cfg=1,
sampler_name="euler",
scheduler="normal",
denoise=denoising_strength,
mode_type="Linear",
tile_width=1024,
tile_height=1024,
mask_blur=8,
tile_padding=32,
seam_fix_mode="None",
seam_fix_denoise=1,
seam_fix_width=64,
seam_fix_mask_blur=8,
seam_fix_padding=16,
force_uniform_tiles=True,
tiled_decode=False,
image=get_value_at_index(loadimage_res, 0),
model=get_value_at_index(unetloader_res, 0),
positive=get_value_at_index(fluxguidance_res, 0),
negative=get_value_at_index(negative_res, 0),
vae=get_value_at_index(vaeloader_res, 0),
upscale_model=get_value_at_index(upscalemodelloader_res, 0),
)
output_tensor = get_value_at_index(usd_res, 0)
image = tensor_to_pil(output_tensor)
os.unlink(input_image_path)
os.unlink(temp_path)
target_w, target_h = w_original * upscale_factor, h_original * upscale_factor
if image.size != (target_w, target_h):
image = image.resize((target_w, target_h), resample=Image.LANCZOS)
if was_resized:
gr.Info(f"Resizing output to target size: {target_w}x{target_h}")
image = image.resize((target_w, target_h), resample=Image.LANCZOS)
resized_input = true_input_image.resize(image.size, resample=Image.LANCZOS)
return [resized_input, image]
with gr.Blocks(css=css, title="π¨ AI Image Upscaler - FLUX ComfyUI") as demo:
gr.HTML("""
<div class="main-header">
<h1>π¨ Flux Dev Image Upscaler (FP8)</h1>
<p>Upload an image or provide a URL to upscale it using FLUX FP8 with Ultimate SD Upscale</p>
<p>Using FLUX.1-dev FP8 model</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<h3>π€ Input</h3>")
with gr.Tabs():
with gr.TabItem("π Upload Image"):
input_image = gr.Image(
label="Upload Image",
type="pil",
height=200
)
with gr.TabItem("π Image URL"):
image_url = gr.Textbox(
label="Image URL",
placeholder="https://example.com/image.jpg",
value="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Example.jpg/800px-Example.jpg"
)
gr.HTML("<h3>ποΈ Prompt Settings</h3>")
custom_prompt = gr.Textbox(
label="Custom Prompt (optional)",
placeholder="Enter custom prompt or leave empty",
lines=2
)
gr.HTML("<h3>βοΈ Upscaling Settings</h3>")
upscale_factor = gr.Slider(
label="Upscale Factor",
minimum=1,
maximum=4,
step=1,
value=2,
info="How much to upscale the image"
)
denoising_strength = gr.Slider(
label="Denoising Strength",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.3,
info="Controls how much the image is transformed"
)
with gr.Row():
randomize_seed = gr.Checkbox(
label="Randomize seed",
value=True
)
seed = gr.Textbox(
label="Seed",
value="42",
placeholder="Enter seed value",
interactive=True
)
enhance_btn = gr.Button(
"π Upscale Image",
variant="primary",
size="lg"
)
with gr.Column(scale=2):
gr.HTML("<h3>π Results</h3>")
result_slider = ImageSlider(
type="pil",
interactive=False,
height=600,
elem_id="result_slider",
label=None
)
enhance_btn.click(
fn=enhance_image,
inputs=[
input_image,
image_url,
seed,
randomize_seed,
upscale_factor,
denoising_strength,
custom_prompt
],
outputs=[result_slider]
)
gr.HTML("""
<div style="margin-top: 2rem; padding: 1rem; background: #f0f0f0; border-radius: 8px;">
<p><strong>Note:</strong> This upscaler uses the Flux.1-dev model. Users are responsible for obtaining commercial rights if used commercially under their license.</p>
</div>
""")
gr.HTML("""
<style>
#result_slider .slider {
width: 100% !important;
max-width: inherit !important;
}
#result_slider img {
object-fit: contain !important;
width: 100% !important;
height: auto !important;
}
#result_slider .gr-button-tool {
display: none !important;
}
#result_slider .gr-button-undo {
display: none !important;
}
#result_slider .gr-button-clear {
display: none !important;
}
#result_slider .badge-container .badge {
display: none !important;
}
#result_slider .badge-container::before {
content: "Before";
position: absolute;
top: 10px;
left: 10px;
background: rgba(0,0,0,0.5);
color: white;
padding: 5px;
border-radius: 5px;
z-index: 10;
}
#result_slider .badge-container::after {
content: "After";
position: absolute;
top: 10px;
right: 10px;
background: rgba(0,0,0,0.5);
color: white;
padding: 5px;
border-radius: 5px;
z-index: 10;
}
#result_slider .fullscreen img {
object-fit: contain !important;
width: 100vw !important;
height: 100vh !important;
position: absolute;
top: 0;
left: 0;
}
</style>
""")
gr.HTML("""
<script>
document.addEventListener('DOMContentLoaded', function() {
const sliderInput = document.querySelector('#result_slider input[type="range"]');
if (sliderInput) {
sliderInput.value = 50;
sliderInput.dispatchEvent(new Event('input'));
}
});
</script>
""")
if __name__ == "__main__":
demo.queue().launch(share=True, server_name="0.0.0.0", server_port=7860) |