Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,9 +3,9 @@ import torch
|
|
| 3 |
import torch.nn.functional as F
|
| 4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 5 |
import re
|
| 6 |
-
import logging
|
| 7 |
|
| 8 |
-
# Set up logging
|
| 9 |
logging.basicConfig(level=logging.INFO)
|
| 10 |
logger = logging.getLogger(__name__)
|
| 11 |
|
|
@@ -16,34 +16,38 @@ st.set_page_config(
|
|
| 16 |
layout="wide"
|
| 17 |
)
|
| 18 |
|
| 19 |
-
# Logo
|
| 20 |
-
st.
|
| 21 |
-
""
|
| 22 |
-
|
| 23 |
-
<img src="https://dejan.ai/wp-content/uploads/2024/02/dejan-300x103.png" alt="DEJAN logo">
|
| 24 |
-
</a>
|
| 25 |
-
""",
|
| 26 |
-
unsafe_allow_html=True
|
| 27 |
)
|
| 28 |
|
| 29 |
-
#
|
| 30 |
st.markdown("""
|
| 31 |
<link href="https://fonts.googleapis.com/css2?family=Roboto&display=swap" rel="stylesheet">
|
| 32 |
<style>
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
</style>
|
| 37 |
""", unsafe_allow_html=True)
|
| 38 |
|
| 39 |
-
@st.cache_resource
|
| 40 |
def load_model_and_tokenizer(model_name):
|
|
|
|
|
|
|
| 41 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
| 42 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 43 |
dtype = torch.bfloat16 if (device.type == "cuda" and torch.cuda.is_bf16_supported()) else torch.float32
|
|
|
|
|
|
|
|
|
|
| 44 |
model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=dtype)
|
| 45 |
model.to(device)
|
| 46 |
model.eval()
|
|
|
|
|
|
|
| 47 |
return tokenizer, model, device
|
| 48 |
|
| 49 |
MODEL_NAME = "dejanseo/ai-detection-small"
|
|
@@ -51,33 +55,33 @@ try:
|
|
| 51 |
tokenizer, model, device = load_model_and_tokenizer(MODEL_NAME)
|
| 52 |
except Exception as e:
|
| 53 |
st.error(f"Error loading model: {e}")
|
| 54 |
-
logger.error("Failed to load model or tokenizer", exc_info=True)
|
| 55 |
st.stop()
|
| 56 |
|
| 57 |
# Labels
|
| 58 |
LABELS = ["AI Content", "Human Content"]
|
| 59 |
|
| 60 |
-
#
|
| 61 |
def sent_tokenize(text):
|
| 62 |
sentences = re.split(r'(?<=[\.!?])\s+', text.strip())
|
| 63 |
return [s for s in sentences if s]
|
| 64 |
|
| 65 |
# UI
|
| 66 |
st.title("AI Article Detection")
|
| 67 |
-
text = st.text_area("Enter text to classify", height=200)
|
| 68 |
|
| 69 |
if st.button("Classify", type="primary"):
|
| 70 |
-
if not text.strip():
|
| 71 |
st.warning("Please enter some text.")
|
| 72 |
else:
|
| 73 |
-
with st.spinner("Analyzing..."):
|
| 74 |
try:
|
| 75 |
sentences = sent_tokenize(text)
|
| 76 |
if not sentences:
|
| 77 |
st.warning("No sentences detected.")
|
| 78 |
st.stop()
|
| 79 |
|
| 80 |
-
# Tokenize
|
| 81 |
inputs = tokenizer(
|
| 82 |
sentences,
|
| 83 |
return_tensors="pt",
|
|
@@ -90,21 +94,17 @@ if st.button("Classify", type="primary"):
|
|
| 90 |
with torch.no_grad():
|
| 91 |
outputs = model(**inputs)
|
| 92 |
logits = outputs.logits
|
| 93 |
-
probs = F.softmax(logits, dim=-1).cpu() #
|
| 94 |
preds = torch.argmax(probs, dim=-1).cpu()
|
| 95 |
|
| 96 |
# Build inline styled text
|
| 97 |
styled_chunks = []
|
| 98 |
for i, sent in enumerate(sentences):
|
| 99 |
pred = preds[i].item()
|
| 100 |
-
#
|
| 101 |
-
if pred == 0
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
r, g = 0, 255 # green for Human
|
| 105 |
-
confidence = probs[i, pred].item() # between 0 and 1
|
| 106 |
-
alpha = confidence # drive opacity directly
|
| 107 |
-
# wrap sentence in span
|
| 108 |
span = (
|
| 109 |
f"<span "
|
| 110 |
f"style='background-color: rgba({r},{g},0,{alpha:.2f}); "
|
|
@@ -114,15 +114,14 @@ if st.button("Classify", type="primary"):
|
|
| 114 |
)
|
| 115 |
styled_chunks.append(span)
|
| 116 |
|
| 117 |
-
# join all sentences inline
|
| 118 |
full_text_html = "".join(styled_chunks)
|
| 119 |
st.markdown(full_text_html, unsafe_allow_html=True)
|
| 120 |
|
| 121 |
-
# Overall AI likelihood
|
| 122 |
avg_probs = torch.mean(probs, dim=0)
|
| 123 |
-
ai_likelihood = avg_probs[0].item() * 100
|
| 124 |
st.subheader(f"🤖 AI Likelihood: {ai_likelihood:.1f}%")
|
| 125 |
|
| 126 |
except Exception as e:
|
| 127 |
-
st.error(f"
|
| 128 |
-
logger.error("
|
|
|
|
| 3 |
import torch.nn.functional as F
|
| 4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 5 |
import re
|
| 6 |
+
import logging # Optional: Add logging for better debugging
|
| 7 |
|
| 8 |
+
# Set up logging (optional but helpful)
|
| 9 |
logging.basicConfig(level=logging.INFO)
|
| 10 |
logger = logging.getLogger(__name__)
|
| 11 |
|
|
|
|
| 16 |
layout="wide"
|
| 17 |
)
|
| 18 |
|
| 19 |
+
# Logo as provided
|
| 20 |
+
st.logo(
|
| 21 |
+
image="https://dejan.ai/wp-content/uploads/2024/02/dejan-300x103.png",
|
| 22 |
+
link="https://dejan.ai/",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
)
|
| 24 |
|
| 25 |
+
# Font styling
|
| 26 |
st.markdown("""
|
| 27 |
<link href="https://fonts.googleapis.com/css2?family=Roboto&display=swap" rel="stylesheet">
|
| 28 |
<style>
|
| 29 |
+
html, body, [class*="css"] {
|
| 30 |
+
font-family: 'Roboto', sans-serif;
|
| 31 |
+
}
|
| 32 |
</style>
|
| 33 |
""", unsafe_allow_html=True)
|
| 34 |
|
| 35 |
+
@st.cache_resource # Cache the model and tokenizer to avoid reloading on every interaction
|
| 36 |
def load_model_and_tokenizer(model_name):
|
| 37 |
+
"""Loads the model and tokenizer."""
|
| 38 |
+
logger.info(f"Loading tokenizer: {model_name}")
|
| 39 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 40 |
+
|
| 41 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 42 |
dtype = torch.bfloat16 if (device.type == "cuda" and torch.cuda.is_bf16_supported()) else torch.float32
|
| 43 |
+
logger.info(f"Using device: {device} with dtype: {dtype}")
|
| 44 |
+
|
| 45 |
+
logger.info(f"Loading model: {model_name}")
|
| 46 |
model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=dtype)
|
| 47 |
model.to(device)
|
| 48 |
model.eval()
|
| 49 |
+
logger.info("Model loaded successfully.")
|
| 50 |
+
|
| 51 |
return tokenizer, model, device
|
| 52 |
|
| 53 |
MODEL_NAME = "dejanseo/ai-detection-small"
|
|
|
|
| 55 |
tokenizer, model, device = load_model_and_tokenizer(MODEL_NAME)
|
| 56 |
except Exception as e:
|
| 57 |
st.error(f"Error loading model: {e}")
|
| 58 |
+
logger.error(f"Failed to load model or tokenizer: {e}", exc_info=True)
|
| 59 |
st.stop()
|
| 60 |
|
| 61 |
# Labels
|
| 62 |
LABELS = ["AI Content", "Human Content"]
|
| 63 |
|
| 64 |
+
# Regex-based sentence splitter
|
| 65 |
def sent_tokenize(text):
|
| 66 |
sentences = re.split(r'(?<=[\.!?])\s+', text.strip())
|
| 67 |
return [s for s in sentences if s]
|
| 68 |
|
| 69 |
# UI
|
| 70 |
st.title("AI Article Detection")
|
| 71 |
+
text = st.text_area("Enter text to classify", height=200, placeholder="Paste your text here...")
|
| 72 |
|
| 73 |
if st.button("Classify", type="primary"):
|
| 74 |
+
if not text or not text.strip():
|
| 75 |
st.warning("Please enter some text.")
|
| 76 |
else:
|
| 77 |
+
with st.spinner("Analyzing... Please wait."):
|
| 78 |
try:
|
| 79 |
sentences = sent_tokenize(text)
|
| 80 |
if not sentences:
|
| 81 |
st.warning("No sentences detected.")
|
| 82 |
st.stop()
|
| 83 |
|
| 84 |
+
# Tokenize sentences
|
| 85 |
inputs = tokenizer(
|
| 86 |
sentences,
|
| 87 |
return_tensors="pt",
|
|
|
|
| 94 |
with torch.no_grad():
|
| 95 |
outputs = model(**inputs)
|
| 96 |
logits = outputs.logits
|
| 97 |
+
probs = F.softmax(logits, dim=-1).cpu() # [n_sentences, 2]
|
| 98 |
preds = torch.argmax(probs, dim=-1).cpu()
|
| 99 |
|
| 100 |
# Build inline styled text
|
| 101 |
styled_chunks = []
|
| 102 |
for i, sent in enumerate(sentences):
|
| 103 |
pred = preds[i].item()
|
| 104 |
+
# red for AI (class 0), green for Human (class 1)
|
| 105 |
+
r, g = (255, 0) if pred == 0 else (0, 255)
|
| 106 |
+
confidence = probs[i, pred].item() # 0.0–1.0
|
| 107 |
+
alpha = confidence # opacity
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
span = (
|
| 109 |
f"<span "
|
| 110 |
f"style='background-color: rgba({r},{g},0,{alpha:.2f}); "
|
|
|
|
| 114 |
)
|
| 115 |
styled_chunks.append(span)
|
| 116 |
|
|
|
|
| 117 |
full_text_html = "".join(styled_chunks)
|
| 118 |
st.markdown(full_text_html, unsafe_allow_html=True)
|
| 119 |
|
| 120 |
+
# Overall AI likelihood (class 0)
|
| 121 |
avg_probs = torch.mean(probs, dim=0)
|
| 122 |
+
ai_likelihood = avg_probs[0].item() * 100
|
| 123 |
st.subheader(f"🤖 AI Likelihood: {ai_likelihood:.1f}%")
|
| 124 |
|
| 125 |
except Exception as e:
|
| 126 |
+
st.error(f"An error occurred during analysis: {e}")
|
| 127 |
+
logger.error("Analysis failed", exc_info=True)
|