Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,9 +9,6 @@ from urllib.parse import urlparse
|
|
| 9 |
import time
|
| 10 |
import os
|
| 11 |
|
| 12 |
-
from safetensors.torch import load_file
|
| 13 |
-
import json
|
| 14 |
-
|
| 15 |
# --- import your architecture ---
|
| 16 |
# Make sure this file is in the repo (e.g., models/deberta_lstm_classifier.py)
|
| 17 |
# and update the import path accordingly.
|
|
@@ -23,71 +20,36 @@ from llm_client import LLMClient
|
|
| 23 |
|
| 24 |
# --------- Config ----------
|
| 25 |
REPO_ID = "dungeon29/deberta-lstm-detect-phishing" # HF repo that holds the checkpoint
|
| 26 |
-
CKPT_NAME = "
|
| 27 |
MODEL_NAME = "microsoft/deberta-base" # base tokenizer/backbone
|
| 28 |
LABELS = ["benign", "phishing"] # adjust to your classes
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
# --------- Load model/tokenizer once (global) ----------
|
| 31 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 32 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
print(f"📂 Found local checkpoint: {CKPT_NAME}")
|
| 37 |
-
ckpt_path = CKPT_NAME
|
| 38 |
-
else:
|
| 39 |
-
print(f"⬇️ Downloading checkpoint {CKPT_NAME} from HF Hub...")
|
| 40 |
-
try:
|
| 41 |
-
ckpt_path = hf_hub_download(repo_id=REPO_ID, filename=CKPT_NAME)
|
| 42 |
-
except Exception as e:
|
| 43 |
-
print(f"⚠️ Could not download from HF: {e}")
|
| 44 |
-
# Fallback to pytorch_model.bin if the new name fails
|
| 45 |
-
print("🔄 Trying fallback to pytorch_model.bin...")
|
| 46 |
-
ckpt_path = hf_hub_download(repo_id=REPO_ID, filename="pytorch_model.bin")
|
| 47 |
-
|
| 48 |
-
# Load weights based on file extension
|
| 49 |
-
if ckpt_path.endswith(".safetensors"):
|
| 50 |
-
print("📦 Loading weights from safetensors...")
|
| 51 |
-
state_dict = load_file(ckpt_path, device=device)
|
| 52 |
-
|
| 53 |
-
# Try to load config.json for model_args
|
| 54 |
-
try:
|
| 55 |
-
if os.path.exists("config.json"):
|
| 56 |
-
config_path = "config.json"
|
| 57 |
-
else:
|
| 58 |
-
config_path = hf_hub_download(repo_id=REPO_ID, filename="config.json")
|
| 59 |
-
|
| 60 |
-
with open(config_path, "r") as f:
|
| 61 |
-
config = json.load(f)
|
| 62 |
-
# Extract model_args from config if they exist, otherwise use defaults
|
| 63 |
-
# Assuming config might have custom keys or we just use defaults
|
| 64 |
-
model_args = config.get("model_args", {})
|
| 65 |
-
except Exception as e:
|
| 66 |
-
print(f"⚠️ Could not load config.json: {e}. Using default model args.")
|
| 67 |
-
model_args = {}
|
| 68 |
-
|
| 69 |
-
else:
|
| 70 |
-
# Legacy loading for .bin/.pt
|
| 71 |
-
print("📦 Loading weights from torch checkpoint...")
|
| 72 |
-
checkpoint = torch.load(ckpt_path, map_location=device)
|
| 73 |
-
if isinstance(checkpoint, dict) and "model_state_dict" in checkpoint:
|
| 74 |
-
state_dict = checkpoint["model_state_dict"]
|
| 75 |
-
model_args = checkpoint.get("model_args", {})
|
| 76 |
-
elif isinstance(checkpoint, dict):
|
| 77 |
-
state_dict = checkpoint
|
| 78 |
-
model_args = checkpoint.get("model_args", {})
|
| 79 |
-
else:
|
| 80 |
-
state_dict = checkpoint
|
| 81 |
-
model_args = {}
|
| 82 |
|
| 83 |
-
#
|
|
|
|
| 84 |
model = DeBERTaLSTMClassifier(**model_args)
|
| 85 |
|
| 86 |
-
# Load
|
| 87 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
model.load_state_dict(state_dict, strict=False)
|
| 89 |
|
| 90 |
-
#
|
| 91 |
if hasattr(model, 'attention') and 'attention.weight' not in state_dict:
|
| 92 |
print("⚠️ Loaded model without attention layer, using newly initialized attention weights")
|
| 93 |
else:
|
|
|
|
| 9 |
import time
|
| 10 |
import os
|
| 11 |
|
|
|
|
|
|
|
|
|
|
| 12 |
# --- import your architecture ---
|
| 13 |
# Make sure this file is in the repo (e.g., models/deberta_lstm_classifier.py)
|
| 14 |
# and update the import path accordingly.
|
|
|
|
| 20 |
|
| 21 |
# --------- Config ----------
|
| 22 |
REPO_ID = "dungeon29/deberta-lstm-detect-phishing" # HF repo that holds the checkpoint
|
| 23 |
+
CKPT_NAME = "pytorch_model.bin" # the .pt file name
|
| 24 |
MODEL_NAME = "microsoft/deberta-base" # base tokenizer/backbone
|
| 25 |
LABELS = ["benign", "phishing"] # adjust to your classes
|
| 26 |
|
| 27 |
+
# If your checkpoint contains hyperparams, you can fetch them like:
|
| 28 |
+
# checkpoint.get("config") or checkpoint.get("model_args")
|
| 29 |
+
# and pass into DeBERTaLSTMClassifier(**model_args)
|
| 30 |
+
|
| 31 |
# --------- Load model/tokenizer once (global) ----------
|
| 32 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 33 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 34 |
|
| 35 |
+
ckpt_path = hf_hub_download(repo_id=REPO_ID, filename=CKPT_NAME)
|
| 36 |
+
checkpoint = torch.load(ckpt_path, map_location=device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
# If you saved hyperparams in the checkpoint, use them:
|
| 39 |
+
model_args = checkpoint.get("model_args", {}) # e.g., {"lstm_hidden":256, "num_labels":2, ...}
|
| 40 |
model = DeBERTaLSTMClassifier(**model_args)
|
| 41 |
|
| 42 |
+
# Load weights
|
| 43 |
try:
|
| 44 |
+
state_dict = torch.load(ckpt_path, map_location=device)
|
| 45 |
+
|
| 46 |
+
# Xử lý nếu file lưu dạng checkpoint đầy đủ (có key "model_state_dict")
|
| 47 |
+
if "model_state_dict" in state_dict:
|
| 48 |
+
state_dict = state_dict["model_state_dict"]
|
| 49 |
+
|
| 50 |
model.load_state_dict(state_dict, strict=False)
|
| 51 |
|
| 52 |
+
# Kiểm tra layer attention
|
| 53 |
if hasattr(model, 'attention') and 'attention.weight' not in state_dict:
|
| 54 |
print("⚠️ Loaded model without attention layer, using newly initialized attention weights")
|
| 55 |
else:
|