fangedvampire24's picture
Update app.py
ba5a437 verified
import gradio as gr #Web interface
from transformers import AutoModelForCausalLM, AutoTokenizer #For loading the model and making the input into tokens
model_name="Salesforce/codegen-350M-multi"
#Initialize the tokenizer and model
tokenizer=AutoTokenizer.from_pretrained(model_name)
model=AutoModelForCausalLM.from_pretrained(model_name)
def generate_code(prompt, max_length=100, temperature=0.7, top_p=0.95):
inputs=tokenizer(prompt,return_tensors='pt')
outputs=model.generate(**inputs, max_length=max_length, temperature=temperature, top_p=top_p, do_sample=True) #input: input_id, weight_number
generated_code=tokenizer.decode(outputs[0],skip_special_tokens=True)
return generated_code
#Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## CODE GENERATION WITH CODEGEN MODEL")
#input box to add prompt
prompt=gr.Textbox(lines=10, label='Enter your prompt for code generation')
max_length=gr.Slider(50,500, value=100, label='Max Length')
temperature=gr.Slider(0.1,0.9, value=0.7, label='Temperature')
top_p=gr.Slider(0.1,1.0, value=0.95, label='Top P value')
output_box=gr.Textbox(lines=20, label='Generated Code')
generate_button=gr.Button('Generate code')
generate_button.click(fn=generate_code,
inputs=[prompt,max_length,temperature,top_p],
outputs=output_box)
demo.launch()