llm_leaderboard_fr / README.md
g0byx3's picture
Update README.md
d58e6ce verified
---
title: Leaderboard LLM FR
emoji: πŸ†πŸ‡«πŸ‡·
colorFrom: blue
colorTo: red
sdk: docker
hf_oauth: true
pinned: true
license: apache-2.0
duplicated_from: open-llm-leaderboard/open_llm_leaderboard
tags:
- leaderboard
short_description: Track, rank and evaluate open LLMs and chatbots in French
---
# Leaderboard LLM FR
Modern React interface for comparing Large Language Models (LLMs) in an open and reproducible way.
## Features
- πŸ“Š Interactive table with advanced sorting and filtering
- πŸ” Semantic model search
- πŸ“Œ Pin models for comparison
- πŸ“± Responsive and modern interface
- 🎨 Dark/Light mode
- ⚑️ Optimized performance with virtualization
## Architecture
The project is split into two main parts:
### Frontend (React)
```
frontend/
β”œβ”€β”€ src/
β”‚ β”œβ”€β”€ components/ # Reusable UI components
β”‚ β”œβ”€β”€ pages/ # Application pages
β”‚ β”œβ”€β”€ hooks/ # Custom React hooks
β”‚ β”œβ”€β”€ context/ # React contexts
β”‚ └── constants/ # Constants and configurations
β”œβ”€β”€ public/ # Static assets
└── server.js # Express server for production
```
### Backend (FastAPI)
```
backend/
β”œβ”€β”€ app/
β”‚ β”œβ”€β”€ api/ # API router and endpoints
β”‚ β”‚ └── endpoints/ # Specific API endpoints
β”‚ β”œβ”€β”€ core/ # Core functionality
β”‚ β”œβ”€β”€ config/ # Configuration
β”‚ └── services/ # Business logic services
β”‚ β”œβ”€β”€ leaderboard.py
β”‚ β”œβ”€β”€ models.py
β”‚ β”œβ”€β”€ votes.py
β”‚ └── hf_service.py
└── utils/ # Utility functions
```
## Technologies
### Frontend
- React
- Material-UI
- TanStack Table & Virtual
- Express.js
### Backend
- FastAPI
- Hugging Face API
- Docker
## Development
The repositories from which to operate can be parametrized through environment variables:
```bash
export HF_ORGANIZATION="fr-gouv-coordination-ia"
export REQUESTS_REPO="requests-dev"
export RESULTS_REPO="results-dev"
```
The appropriate token to read and write from these repos should also be set appropriately:
``` bash
export HF_TOKEN="mytoken"
```
The application is containerized using Docker and can be run using:
```bash
docker-compose up
```