Spaces:
Running
Running
File size: 31,173 Bytes
bf48cd0 1bc4dcb bf48cd0 1bc4dcb 5f972c1 1bc4dcb 5f972c1 1bc4dcb 6692a78 1bc4dcb 8336be3 1bc4dcb eba6bc8 1bc4dcb e51874e 1bc4dcb e51874e 1bc4dcb fc30b48 1bc4dcb fc30b48 1bc4dcb fc30b48 1bc4dcb fc30b48 1bc4dcb 1e90d4c 1bc4dcb fc30b48 1bc4dcb fc30b48 1bc4dcb fc30b48 1bc4dcb fc30b48 f1f8e2a 1bc4dcb 18e4b7b 1bc4dcb cffb02c 1bc4dcb cffb02c e51874e 1bc4dcb e51874e 1bc4dcb 18e4b7b 1bc4dcb fc30b48 1bc4dcb e51874e 1bc4dcb e51874e 1bc4dcb e51874e 1bc4dcb e51874e 1bc4dcb cc81e3b 1bc4dcb cc81e3b 1bc4dcb 18e4b7b 1bc4dcb e51874e 1bc4dcb e51874e 1bc4dcb fc30b48 1bc4dcb 986adda 1bc4dcb fc30b48 1bc4dcb e51874e 1bc4dcb e51874e 1bc4dcb fc30b48 1bc4dcb fc30b48 1bc4dcb cc81e3b 1bc4dcb cc81e3b 1bc4dcb 986adda 1bc4dcb 986adda 1bc4dcb 986adda 1bc4dcb 986adda 1bc4dcb fc30b48 1bc4dcb fc30b48 1bc4dcb fc30b48 1bc4dcb c6e67aa 1bc4dcb c6e67aa 1bc4dcb fc30b48 1bc4dcb e51874e 1bc4dcb b0e62d9 1bc4dcb b0e62d9 1bc4dcb 5f972c1 1bc4dcb fc30b48 1bc4dcb fc30b48 1bc4dcb 5f972c1 1bc4dcb e51874e 1bc4dcb fc30b48 1bc4dcb fc30b48 1bc4dcb e51874e 1bc4dcb 5f972c1 1bc4dcb fc30b48 1bc4dcb b0e62d9 1bc4dcb fc30b48 1bc4dcb fc30b48 96a2f23 1bc4dcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 |
import gradio as gr
import torch
import soundfile as sf
import edge_tts
import asyncio
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from keybert import KeyBERT
from moviepy.editor import (
VideoFileClip,
AudioFileClip,
concatenate_videoclips,
concatenate_audioclips,
CompositeAudioClip,
AudioClip,
TextClip,
CompositeVideoClip,
VideoClip,
ColorClip
)
import numpy as np
import json
import logging
import os
import requests
import re
import math
import tempfile
import shutil
import uuid
import threading
import time
from datetime import datetime, timedelta
# ------------------- FIX PARA PILLOW -------------------
try:
from PIL import Image
if not hasattr(Image, 'ANTIALIAS'):
Image.ANTIALIAS = Image.Resampling.LANCZOS
except ImportError:
pass
# ------------------- Configuración & Globals -------------------
os.environ["GRADIO_SERVER_TIMEOUT"] = "3800"
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
PEXELS_API_KEY = os.getenv("PEXELS_API_KEY")
if not PEXELS_API_KEY:
logger.warning("PEXELS_API_KEY no definido. Los videos no funcionarán.")
tokenizer, gpt2_model, kw_model = None, None, None
RESULTS_DIR = "video_results"
os.makedirs(RESULTS_DIR, exist_ok=True)
TASKS = {}
# ------------------- Motor Edge TTS -------------------
class EdgeTTSEngine:
def __init__(self, voice="es-ES-AlvaroNeural"):
self.voice = voice
logger.info(f"Inicializando Edge TTS con voz: {voice}")
async def _synthesize_async(self, text, output_path):
try:
communicate = edge_tts.Communicate(text, self.voice)
await communicate.save(output_path)
return True
except Exception as e:
logger.error(f"Error en Edge TTS: {e}")
return False
def synthesize(self, text, output_path):
try:
return asyncio.run(self._synthesize_async(text, output_path))
except Exception as e:
logger.error(f"Error al sintetizar con Edge TTS: {e}")
return False
tts_engine = EdgeTTSEngine()
# ------------------- Carga Perezosa de Modelos -------------------
def get_tokenizer():
global tokenizer
if tokenizer is None:
logger.info("Cargando tokenizer GPT2 español...")
tokenizer = GPT2Tokenizer.from_pretrained("datificate/gpt2-small-spanish")
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
return tokenizer
def get_gpt2_model():
global gpt2_model
if gpt2_model is None:
logger.info("Cargando modelo GPT-2 español...")
gpt2_model = GPT2LMHeadModel.from_pretrained("datificate/gpt2-small-spanish").eval()
return gpt2_model
def get_kw_model():
global kw_model
if kw_model is None:
logger.info("Cargando modelo KeyBERT multilingüe...")
kw_model = KeyBERT("paraphrase-multilingual-MiniLM-L12-v2")
return kw_model
# ------------------- Funciones del Pipeline -------------------
def update_task_progress(task_id, message):
if task_id in TASKS:
TASKS[task_id]['progress_log'] = message
logger.info(f"[{task_id}] {message}")
def gpt2_script(prompt: str) -> str:
try:
local_tokenizer = get_tokenizer()
local_gpt2_model = get_gpt2_model()
instruction = f"Escribe un guion corto y coherente sobre: {prompt}"
inputs = local_tokenizer(instruction, return_tensors="pt", truncation=True, max_length=512)
outputs = local_gpt2_model.generate(
**inputs,
max_length=160 + inputs["input_ids"].shape[1],
do_sample=True,
top_p=0.9,
top_k=40,
temperature=0.7,
no_repeat_ngram_size=3,
pad_token_id=local_tokenizer.pad_token_id,
eos_token_id=local_tokenizer.eos_token_id,
)
text = local_tokenizer.decode(outputs[0], skip_special_tokens=True)
generated = text.split("sobre:")[-1].strip()
return generated if generated else prompt
except Exception as e:
logger.error(f"Error generando guión: {e}")
return f"Hoy hablaremos sobre {prompt}. Este es un tema fascinante que merece nuestra atención."
def generate_tts_audio(text: str, output_path: str) -> bool:
try:
logger.info("Generando audio con Edge TTS...")
success = tts_engine.synthesize(text, output_path)
if success and os.path.exists(output_path) and os.path.getsize(output_path) > 0:
logger.info(f"Audio generado exitosamente: {output_path}")
return True
else:
logger.error("El archivo de audio no se generó correctamente")
return False
except Exception as e:
logger.error(f"Error generando TTS: {e}")
return False
def extract_keywords(text: str) -> list[str]:
try:
local_kw_model = get_kw_model()
clean_text = re.sub(r"[^\w\sáéíóúñÁÉÍÓÚÑ]", "", text.lower())
kws = local_kw_model.extract_keywords(clean_text, stop_words="spanish", top_n=5)
keywords = [k.replace(" ", "+") for k, _ in kws if k]
return keywords if keywords else ["mystery", "conspiracy", "alien", "UFO", "secret", "cover-up", "illusion", "paranoia",
"secret society", "lie", "simulation", "matrix", "terror", "darkness", "shadow", "enigma",
"urban legend", "unknown", "hidden", "mistrust", "experiment", "government", "control",
"surveillance", "propaganda", "deception", "whistleblower", "anomaly", "extraterrestrial",
"shadow government", "cabal", "deep state", "new world order", "mind control", "brainwashing",
"disinformation", "false flag", "assassin", "black ops", "anomaly", "men in black", "abduction",
"hybrid", "ancient aliens", "hollow earth", "simulation theory", "alternate reality", "predictive programming",
"symbolism", "occult", "eerie", "haunting", "unexplained", "forbidden knowledge", "redacted", "conspiracy theorist"]
except Exception as e:
logger.error(f"Error extrayendo keywords: {e}")
return ["mystery", "conspiracy", "alien", "UFO", "secret", "cover-up", "illusion", "paranoia",
"secret society", "lie", "simulation", "matrix", "terror", "darkness", "shadow", "enigma",
"urban legend", "unknown", "hidden", "mistrust", "experiment", "government", "control",
"surveillance", "propaganda", "deception", "whistleblower", "anomaly", "extraterrestrial",
"shadow government", "cabal", "deep state", "new world order", "mind control", "brainwashing",
"disinformation", "false flag", "assassin", "black ops", "anomaly", "men in black", "abduction",
"hybrid", "ancient aliens", "hollow earth", "simulation theory", "alternate reality", "predictive programming",
"symbolism", "occult", "eerie", "haunting", "unexplained", "forbidden knowledge", "redacted", "conspiracy theorist"]
def search_pexels_videos(query: str, count: int = 3) -> list[dict]:
if not PEXELS_API_KEY:
return []
try:
response = requests.get(
"https://api.pexels.com/videos/search",
headers={"Authorization": PEXELS_API_KEY},
params={"query": query, "per_page": count, "orientation": "landscape"},
timeout=20
)
response.raise_for_status()
return response.json().get("videos", [])
except Exception as e:
logger.error(f"Error buscando videos en Pexels: {e}")
return []
def download_video(url: str, folder: str) -> str | None:
try:
filename = f"{uuid.uuid4().hex}.mp4"
filepath = os.path.join(folder, filename)
with requests.get(url, stream=True, timeout=60) as response:
response.raise_for_status()
with open(filepath, "wb") as f:
for chunk in response.iter_content(chunk_size=1024*1024):
f.write(chunk)
if os.path.exists(filepath) and os.path.getsize(filepath) > 1000:
return filepath
else:
logger.error(f"Archivo descargado inválido: {filepath}")
return None
except Exception as e:
logger.error(f"Error descargando video {url}: {e}")
return None
def create_subtitle_clips(script: str, video_width: int, video_height: int, duration: float):
try:
sentences = [s.strip() for s in re.split(r"[.!?¿¡]", script) if s.strip()]
if not sentences:
return []
total_words = sum(len(s.split()) for s in sentences) or 1
time_per_word = duration / total_words
clips = []
current_time = 0.0
for sentence in sentences:
num_words = len(sentence.split())
sentence_duration = num_words * time_per_word
if sentence_duration < 0.5:
continue
try:
txt_clip = (
TextClip(
sentence,
fontsize=max(20, int(video_height * 0.05)),
color="white",
stroke_color="black",
stroke_width=2,
method="caption",
size=(int(video_width * 0.9), None),
font="Arial-Bold"
)
.set_start(current_time)
.set_duration(sentence_duration)
.set_position(("center", "bottom"))
)
if txt_clip is not None:
clips.append(txt_clip)
except Exception as e:
logger.error(f"Error creando subtítulo para '{sentence}': {e}")
continue
current_time += sentence_duration
return clips
except Exception as e:
logger.error(f"Error creando subtítulos: {e}")
return []
def loop_audio_to_duration(audio_clip: AudioFileClip, target_duration: float) -> AudioFileClip:
if audio_clip is None:
return None
try:
if audio_clip.duration >= target_duration:
return audio_clip.subclip(0, target_duration)
loops_needed = math.ceil(target_duration / audio_clip.duration)
looped_audio = concatenate_audioclips([audio_clip] * loops_needed)
return looped_audio.subclip(0, target_duration)
except Exception as e:
logger.error(f"Error haciendo loop del audio: {e}")
return audio_clip
def create_video(script_text: str, generate_script: bool, music_path: str | None, task_id: str) -> str:
temp_dir = tempfile.mkdtemp()
TARGET_FPS = 24
TARGET_RESOLUTION = (1280, 720)
def normalize_clip(clip):
if clip is None:
return None
try:
if clip.size != TARGET_RESOLUTION:
clip = clip.resize(TARGET_RESOLUTION)
if clip.fps != TARGET_FPS:
clip = clip.set_fps(TARGET_FPS)
return clip
except Exception as e:
logger.error(f"Error normalizando clip: {e}")
return None
def validate_clip(clip, path="unknown"):
"""Función para validar que un clip sea usable"""
if clip is None:
logger.error(f"Clip es None: {path}")
return False
try:
# Verificar duración
if clip.duration <= 0:
logger.error(f"Clip con duración inválida: {path}")
return False
# Verificar que podemos obtener un frame
test_frame = clip.get_frame(0)
if test_frame is None:
logger.error(f"No se pudo obtener frame del clip: {path}")
return False
return True
except Exception as e:
logger.error(f"Error validando clip {path}: {e}")
return False
def create_fallback_video(duration):
"""Crea un video de respaldo"""
try:
fallback = ColorClip(
size=TARGET_RESOLUTION,
color=(0, 0, 0),
duration=duration
)
fallback.fps = TARGET_FPS
return fallback
except Exception as e:
logger.error(f"Error creando video de respaldo: {e}")
return None
try:
# Paso 1: Generar o usar guión
update_task_progress(task_id, "Paso 1/7: Preparando guión...")
if generate_script:
script = gpt2_script(script_text)
else:
script = script_text.strip()
if not script:
raise ValueError("El guión está vacío")
# Paso 2: Generar audio TTS
update_task_progress(task_id, "Paso 2/7: Generando audio con Edge TTS...")
audio_path = os.path.join(temp_dir, "voice.wav")
if not generate_tts_audio(script, audio_path):
raise RuntimeError("Error generando el audio TTS")
voice_clip = AudioFileClip(audio_path)
if voice_clip is None:
raise RuntimeError("No se pudo cargar el clip de audio")
video_duration = voice_clip.duration
if video_duration < 1:
raise ValueError("El audio generado es demasiado corto")
# Paso 3: Buscar y descargar videos
update_task_progress(task_id, "Paso 3/7: Buscando videos en Pexels...")
video_paths = []
keywords = extract_keywords(script)
for i, keyword in enumerate(keywords[:3]):
update_task_progress(task_id, f"Paso 3/7: Buscando videos para '{keyword}' ({i+1}/{len(keywords[:3])})")
videos = search_pexels_videos(keyword, 2)
for video_data in videos:
if len(video_paths) >= 6:
break
video_files = video_data.get("video_files", [])
if video_files:
best_file = max(video_files, key=lambda f: f.get("width", 0))
video_url = best_file.get("link")
if video_url:
downloaded_path = download_video(video_url, temp_dir)
if downloaded_path:
video_paths.append(downloaded_path)
if not video_paths:
logger.warning("No se pudieron descargar videos de Pexels, creando video de respaldo...")
base_video = create_fallback_video(video_duration)
if base_video is None:
raise RuntimeError("No se pudo crear video de respaldo")
else:
# Paso 4: Procesar videos
update_task_progress(task_id, f"Paso 4/7: Procesando {len(video_paths)} videos...")
video_clips = []
for path in video_paths:
clip = None
try:
# Verificar que el archivo exista y tenga tamaño
if not os.path.exists(path) or os.path.getsize(path) < 1024:
logger.error(f"Archivo inválido: {path}")
continue
# Cargar el video
clip = VideoFileClip(path)
if clip is None:
logger.error(f"No se pudo cargar el video: {path}")
continue
# Validar el clip original
if not validate_clip(clip, path):
clip.close()
continue
# Recortar el video
duration = min(8, clip.duration)
processed_clip = clip.subclip(0, duration)
if processed_clip is None:
logger.error(f"Error al recortar video: {path}")
clip.close()
continue
# Validar el clip recortado
if not validate_clip(processed_clip, f"{path} (recortado)"):
processed_clip.close()
clip.close()
continue
# Normalizar
processed_clip = normalize_clip(processed_clip)
if processed_clip is not None:
# Validación final del clip procesado
if validate_clip(processed_clip, f"{path} (normalizado)"):
video_clips.append(processed_clip)
else:
processed_clip.close()
clip.close()
else:
logger.error(f"Error normalizando video: {path}")
clip.close()
except Exception as e:
logger.error(f"Error procesando video {path}: {e}")
finally:
if clip is not None:
clip.close()
# Verificar si tenemos clips válidos
if not video_clips:
logger.warning("No se procesaron videos válidos, creando video de respaldo...")
base_video = create_fallback_video(video_duration)
if base_video is None:
raise RuntimeError("No se pudo crear video de respaldo")
else:
# Verificar que todos los clips sean válidos antes de concatenar
valid_clips = []
for i, clip in enumerate(video_clips):
try:
# Verificación final de cada clip
if validate_clip(clip, f"clip_{i}"):
valid_clips.append(clip)
else:
clip.close()
except Exception as e:
logger.error(f"Clip inválido en posición {i}: {e}")
if clip is not None:
clip.close()
if not valid_clips:
logger.warning("Todos los clips son inválidos, creando video de respaldo...")
base_video = create_fallback_video(video_duration)
if base_video is None:
raise RuntimeError("No se pudo crear video de respaldo")
else:
# Concatenar solo clips válidos
update_task_progress(task_id, "Paso 4/7: Concatenando videos válidos...")
try:
base_video = concatenate_videoclips(valid_clips, method="chain")
# Verificar que la concatenación funcionó
if base_video is None:
raise RuntimeError("La concatenación devolvió None")
# Validar el video concatenado
if not validate_clip(base_video, "video_concatenado"):
raise RuntimeError("Video concatenado inválido")
except Exception as e:
logger.error(f"Error concatenando videos: {e}")
# Liberar clips
for clip in valid_clips:
if clip is not None:
clip.close()
# Crear video de respaldo
base_video = create_fallback_video(video_duration)
if base_video is None:
raise RuntimeError("No se pudo crear video de respaldo")
# Extender video si es más corto que el audio
if base_video.duration < video_duration:
update_task_progress(task_id, "Paso 4/7: Extendiendo video...")
try:
fade_duration = 0.5
loops_needed = math.ceil(video_duration / base_video.duration)
looped_clips = [base_video]
for _ in range(loops_needed - 1):
fade_in_clip = base_video.crossfadein(fade_duration)
if fade_in_clip is not None:
looped_clips.append(fade_in_clip)
looped_clips.append(base_video)
# Guardar referencia al video original para liberarlo después
original_video = base_video
base_video = concatenate_videoclips(looped_clips)
# Verificar el video extendido
if base_video is None or not validate_clip(base_video, "video_extendido"):
logger.error("Error al extender video, usando original")
base_video = original_video
else:
# Liberar el video original
original_video.close()
except Exception as e:
logger.error(f"Error extendiendo video: {e}")
# No hacemos nada, seguimos con el video original
# Asegurar duración exacta
try:
original_video = base_video
base_video = base_video.subclip(0, video_duration)
if base_video is None or not validate_clip(base_video, "video_recortado"):
logger.error("Error al recortar video final, usando original")
base_video = original_video
else:
original_video.close()
except Exception as e:
logger.error(f"Error al recortar video final: {e}")
# No hacemos nada, seguimos con el video original
# Paso 5: Componer audio final
update_task_progress(task_id, "Paso 5/7: Componiendo audio...")
final_audio = voice_clip
if music_path and os.path.exists(music_path):
music_clip = None
try:
music_clip = AudioFileClip(music_path)
if music_clip is not None:
music_clip = loop_audio_to_duration(music_clip, video_duration)
if music_clip is not None:
music_clip = music_clip.volumex(0.2)
final_audio = CompositeAudioClip([music_clip, voice_clip])
except Exception as e:
logger.error(f"Error con música: {e}")
finally:
if music_clip is not None:
music_clip.close()
# Paso 6: Agregar subtítulos
update_task_progress(task_id, "Paso 6/7: Agregando subtítulos...")
subtitle_clips = create_subtitle_clips(script, base_video.w, base_video.h, video_duration)
if subtitle_clips:
try:
original_video = base_video
base_video = CompositeVideoClip([base_video] + subtitle_clips)
if base_video is None or not validate_clip(base_video, "video_con_subtitulos"):
logger.error("Error al agregar subtítulos, usando video original")
base_video = original_video
else:
original_video.close()
except Exception as e:
logger.error(f"Error creando video con subtítulos: {e}")
# Paso 7: Renderizar video final
update_task_progress(task_id, "Paso 7/7: Renderizando video final...")
final_video = base_video.set_audio(final_audio)
output_path = os.path.join(RESULTS_DIR, f"video_{task_id}.mp4")
final_video.write_videofile(
output_path,
fps=TARGET_FPS,
codec="libx264",
audio_codec="aac",
bitrate="8000k",
threads=4,
preset="slow",
logger=None,
verbose=False
)
# Limpiar clips
voice_clip.close()
base_video.close()
final_video.close()
for clip in video_clips:
if clip is not None:
clip.close()
return output_path
except Exception as e:
logger.error(f"Error creando video: {e}")
raise
finally:
try:
shutil.rmtree(temp_dir)
except:
pass
def worker_thread(task_id: str, mode: str, topic: str, user_script: str, music_path: str | None):
try:
generate_script = (mode == "Generar Guion con IA")
content = topic if generate_script else user_script
output_path = create_video(content, generate_script, music_path, task_id)
TASKS[task_id].update({
"status": "done",
"result": output_path,
"progress_log": "✅ ¡Video completado exitosamente!"
})
except Exception as e:
logger.error(f"Error en worker {task_id}: {e}")
TASKS[task_id].update({
"status": "error",
"error": str(e),
"progress_log": f"❌ Error: {str(e)}"
})
def generate_video_with_progress(mode, topic, user_script, music):
content = topic if mode == "Generar Guion con IA" else user_script
if not content or not content.strip():
yield "❌ Error: Por favor, ingresa un tema o guion.", None, None
return
task_id = uuid.uuid4().hex[:8]
TASKS[task_id] = {
"status": "processing",
"progress_log": "🚀 Iniciando generación de video...",
"timestamp": datetime.utcnow()
}
worker = threading.Thread(
target=worker_thread,
args=(task_id, mode, topic, user_script, music),
daemon=True
)
worker.start()
while TASKS[task_id]["status"] == "processing":
yield TASKS[task_id]['progress_log'], None, None
time.sleep(1)
if TASKS[task_id]["status"] == "error":
yield TASKS[task_id]['progress_log'], None, None
elif TASKS[task_id]["status"] == "done":
result_path = TASKS[task_id]['result']
yield TASKS[task_id]['progress_log'], result_path, result_path
# ------------------- Limpieza automática -------------------
def cleanup_old_files():
while True:
try:
time.sleep(6600)
now = datetime.utcnow()
logger.info("Ejecutando limpieza de archivos antiguos...")
for task_id, info in list(TASKS.items()):
if "timestamp" in info and now - info["timestamp"] > timedelta(hours=24):
if info.get("result") and os.path.exists(info.get("result")):
try:
os.remove(info["result"])
logger.info(f"Archivo eliminado: {info['result']}")
except Exception as e:
logger.error(f"Error eliminando archivo: {e}")
del TASKS[task_id]
except Exception as e:
logger.error(f"Error en cleanup: {e}")
threading.Thread(target=cleanup_old_files, daemon=True).start()
# ------------------- Interfaz Gradio -------------------
def toggle_input_fields(mode):
return (
gr.update(visible=mode == "Generar Guion con IA"),
gr.update(visible=mode != "Generar Guion con IA")
)
with gr.Blocks(title="🎬 Generador de Videos IA", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🎬 Generador de Videos con IA
Crea videos profesionales a partir de texto usando:
- **Edge TTS** para voz en español
- **GPT-2** para generación de guiones
- **Pexels API** para videos de stock
- **Subtítulos automáticos** y efectos visuales
El progreso se mostrará en tiempo real.
""")
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### ⚙️ Configuración")
mode_radio = gr.Radio(
choices=["Generar Guion con IA", "Usar Mi Guion"],
value="Generar Guion con IA",
label="Método de creación"
)
topic_input = gr.Textbox(
label="💡 Tema para la IA",
placeholder="Ej: Los misterios del océano profundo",
lines=2
)
script_input = gr.Textbox(
label="📝 Tu Guion Completo",
placeholder="Escribe aquí tu guion personalizado...",
lines=8,
visible=False
)
music_input = gr.Audio(
type="filepath",
label="🎵 Música de fondo (opcional)"
)
generate_btn = gr.Button(
"🎬 Generar Video",
variant="primary",
size="lg"
)
with gr.Column(scale=2):
gr.Markdown("### 📊 Progreso y Resultados")
progress_output = gr.Textbox(
label="📋 Log de progreso en tiempo real",
lines=12,
interactive=False,
show_copy_button=True
)
video_output = gr.Video(
label="🎥 Video generado",
height=400
)
download_output = gr.File(
label="📥 Descargar archivo"
)
mode_radio.change(
fn=toggle_input_fields,
inputs=[mode_radio],
outputs=[topic_input, script_input]
)
generate_btn.click(
fn=generate_video_with_progress,
inputs=[mode_radio, topic_input, script_input, music_input],
outputs=[progress_output, video_output, download_output]
)
gr.Markdown("""
### 📋 Instrucciones:
1. **Elige el método**: Genera un guion con IA o usa el tuyo propio
2. **Configura el contenido**: Ingresa un tema interesante o tu guion
3. **Música opcional**: Sube un archivo de audio para fondo musical
4. **Genera**: Presiona el botón y observa el progreso en tiempo real
⏱️ **Tiempo estimado**: 2-5 minutos dependiendo de la duración del contenido.
""")
if __name__ == "__main__":
logger.info("🚀 Iniciando aplicación Generador de Videos IA...")
demo.queue(max_size=10)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_api=False,
share=True
) |