tune-duel / app.py
gokceuludogan's picture
initial commit
7f8c6a3
import os
import json
import time
import pickle
import random
import importlib
from pathlib import Path
from datetime import datetime
from typing import Dict, List, Tuple, Optional
import gradio as gr
import pandas as pd
import requests
import yaml
# ---------------- Config & Paths ----------------
ROOT = Path(__file__).parent
STATE_DIR = ROOT / "state"; STATE_DIR.mkdir(exist_ok=True, parents=True)
LOG_DIR = STATE_DIR
ELO_PATH = STATE_DIR / "elo.pkl"
LEADERBOARD_CSV = STATE_DIR / "leaderboard.csv"
VOTES_LOG = LOG_DIR / "votes.jsonl"
CACHE_PATH = STATE_DIR / "cache.pkl" # (model, song) -> [items]
INTERACTIONS_LOG = STATE_DIR / "interactions.jsonl"
MODELS_YAML = ROOT / "models.yaml"
TRACKS_CSV = ROOT / "tracks.csv"
TOPK_SHOW = 10
K_FACTOR = 16
START_ELO = 1200.0
SEED = 343
random.seed(SEED)
# ---------------- Model loading ----------------
def load_models():
if not MODELS_YAML.exists():
raise RuntimeError(f"models.yaml not found at {MODELS_YAML}")
cfg = yaml.safe_load(MODELS_YAML.read_text())
models = cfg.get("models", [])
if not models:
raise RuntimeError("No models configured in models.yaml")
names = [m["name"] for m in models]
if len(names) != len(set(names)):
raise RuntimeError("Duplicate model names in models.yaml")
return {m["name"]: m for m in models}
MODELS = load_models()
# ---------------- Track Validation ----------------
def load_tracks():
"""Load track names and IDs from tracks.csv for validation and Spotify integration"""
if not TRACKS_CSV.exists():
print(f"Warning: {TRACKS_CSV} not found. Track validation disabled.")
return set(), {}
try:
df = pd.read_csv(TRACKS_CSV)
# Create track names in format "Track Name by Artist Name"
track_names = []
track_id_map = {} # Maps formatted track names to Spotify track IDs
for _, row in df.iterrows():
track_name = row['track_name'].strip()
artist_name = row['primary_artist_name'].strip()
track_id = row['track_id'].strip()
if track_name and artist_name and track_id:
formatted_name = f"{track_name} by {artist_name}"
track_names.append(formatted_name.lower())
track_id_map[formatted_name.lower()] = track_id
track_names_set = set(track_names)
print(f"Loaded {len(track_names_set)} track names for validation")
print(f"Sample track IDs: {list(track_id_map.items())[:3]}") # Debug print
return track_names_set, track_id_map
except Exception as e:
print(f"Error loading tracks.csv: {e}. Track validation disabled.")
return set(), {}
def validate_track_name(track_name: str, valid_tracks: set) -> Tuple[bool, str]:
"""
Check if a track name exists in the tracks database.
Args:
track_name: The track name to validate
valid_tracks: Set of valid track names (lowercase)
Returns:
Tuple of (is_valid, message)
"""
if not track_name or not track_name.strip():
return False, "Empty track name"
track_lower = track_name.lower().strip()
# Direct match
if track_lower in valid_tracks:
return True, "Track found"
# Fuzzy matching - check if any valid track contains this name
matching_tracks = [t for t in valid_tracks if track_lower in t or t in track_lower]
if matching_tracks:
return True, f"Similar track found: {matching_tracks[0]}"
return False, "Track not found in database"
# Load valid tracks and track ID mapping
VALID_TRACKS, TRACK_ID_MAP = load_tracks()
def get_spotify_track_id(track_name: str) -> Optional[str]:
"""
Get Spotify track ID for a given track name.
Args:
track_name: Track name in format "Song by Artist"
Returns:
Spotify track ID or None if not found
"""
if not track_name:
return None
track_lower = track_name.lower().strip()
# Direct match first
if track_lower in TRACK_ID_MAP:
return TRACK_ID_MAP[track_lower]
# Try to find partial matches
for stored_track, track_id in TRACK_ID_MAP.items():
if track_lower in stored_track or stored_track in track_lower:
return track_id
return None
def create_spotify_url(track_id: str) -> str:
"""
Create Spotify URL for a track.
Args:
track_id: Spotify track ID
Returns:
Spotify URL
"""
return f"https://open.spotify.com/track/{track_id}"
def create_spotify_player_html(track_id: str, width: str = "100%", height: str = "152") -> str:
"""
Create HTML for Spotify web player embed.
Args:
track_id: Spotify track ID
width: Player width (default: "100%")
height: Player height (default: "152")
Returns:
HTML string for Spotify player
"""
if not track_id:
return "<p>No preview available</p>"
url = f"https://open.spotify.com/embed/track/{track_id}?utm_source=generator"
return f'''
<iframe style="border-radius:12px"
src="{url}"
width="{width}"
height="{height}"
frameBorder="0"
allowfullscreen=""
allow="autoplay; clipboard-write; encrypted-media; fullscreen; picture-in-picture"
loading="lazy">
</iframe>
'''
def get_spotify_player(track_name: str) -> str:
"""
Get Spotify web player for a track.
Args:
track_name: Track name to get player for
Returns:
Spotify player HTML or error message
"""
if not track_name or not track_name.strip():
return "<p>Please enter a track name first</p>"
print(f"Looking for track: '{track_name}'") # Debug print
print(f"Available tracks sample: {list(VALID_TRACKS)[:5]}") # Debug print
track_id = get_spotify_track_id(track_name)
print(f"Found track ID: {track_id}") # Debug print
if track_id:
player_html = create_spotify_player_html(track_id)
return f"<h3>🎵 Now Playing: {track_name}</h3>{player_html}"
else:
return f"<p>❌ No preview available for: {track_name}</p><p>Make sure the track exists in our database.</p><p>Available tracks: {', '.join(list(VALID_TRACKS)[:3])}</p>"
def check_track_in_database(track_name: str) -> str:
"""
Check if a track name exists in the tracks database.
This function can be called directly to validate track names.
Args:
track_name: The track name to check
Returns:
String message indicating validation result
"""
is_valid, message = validate_track_name(track_name, VALID_TRACKS)
return message
def find_matching_tracks(query: str, max_results: int = 5) -> List[str]:
"""
Find tracks that match the given query string.
Args:
query: The search query
max_results: Maximum number of results to return
Returns:
List of matching track names with artists
"""
if not query or not query.strip():
return []
query_lower = query.lower().strip()
matches = []
# Direct matches first
for track in VALID_TRACKS:
if track == query_lower:
matches.append(track.title())
if len(matches) >= max_results:
return matches
# Partial matches
for track in VALID_TRACKS:
if query_lower in track and track not in matches:
matches.append(track.title())
if len(matches) >= max_results:
return matches
# Fuzzy matches (track contains query or query contains track)
for track in VALID_TRACKS:
if (track in query_lower or query_lower in track) and track not in matches:
matches.append(track.title())
if len(matches) >= max_results:
return matches
return matches[:max_results]
def get_random_track() -> str:
"""
Get a random track from the database.
Returns:
Random track name with artist (title case)
"""
if not VALID_TRACKS:
return "No tracks available"
random_track = random.choice(list(VALID_TRACKS))
return random_track.title()
# ---------------- Cache ----------------
def load_cache() -> Dict[Tuple[str, str], List[str]]:
if CACHE_PATH.exists():
with CACHE_PATH.open("rb") as f:
return pickle.load(f)
return {}
def save_cache(cache: Dict[Tuple[str, str], List[str]]):
with CACHE_PATH.open("wb") as f:
pickle.dump(cache, f)
CACHE = load_cache()
# ---------------- Elo ----------------
def expected_score(ra: float, rb: float) -> float:
return 1.0 / (1.0 + 10 ** ((rb - ra) / 400.0))
def update_elo(elo: Dict[str, float], a: str, b: str, outcome: str) -> None:
ra = elo.get(a, START_ELO)
rb = elo.get(b, START_ELO)
ea = expected_score(ra, rb)
eb = 1.0 - ea
if outcome == "A":
sa, sb = 1.0, 0.0
elif outcome == "B":
sa, sb = 0.0, 1.0
else:
sa, sb = 0.5, 0.5
elo[a] = ra + K_FACTOR * (sa - ea)
elo[b] = rb + K_FACTOR * (sb - eb)
def load_elo() -> Dict[str, float]:
if ELO_PATH.exists():
with ELO_PATH.open("rb") as f:
elo = pickle.load(f)
else:
elo = {}
# ensure every configured model has an Elo
for m in MODELS.keys():
elo.setdefault(m, START_ELO)
return elo
def save_elo(elo: Dict[str, float]):
with ELO_PATH.open("wb") as f:
pickle.dump(elo, f)
def leaderboard_df(elo: Dict[str, float]) -> pd.DataFrame:
df = pd.DataFrame({"model": list(elo.keys()), "elo": list(elo.values())})
df = df.sort_values("elo", ascending=False)
df.to_csv(LEADERBOARD_CSV, index=False)
return df
# ---------------- Backends ----------------
def call_http(model_cfg: dict, song_ratings: List[Dict[str, any]]) -> List[str]:
endpoint = model_cfg["endpoint"]
timeout = float(model_cfg.get("timeout", 8))
r = requests.post(
endpoint,
json={"song_ratings": song_ratings},
timeout=timeout,
headers={"Content-Type": "application/json"},
)
r.raise_for_status()
obj = r.json()
items = obj.get("items") or obj.get("recommendations") or []
return [str(x) for x in items]
def call_python(model_cfg: dict, song_ratings: List[Dict[str, any]]) -> List[Tuple[str, str]]:
import threading
import time
dotted = model_cfg["callable"] # e.g., "team_alpha.src.recommender.query"
timeout = float(model_cfg.get("timeout", 8)) # 8 seconds timeout for Python models
mod_name, fn_name = dotted.rsplit(".", 1)
mod = importlib.import_module(mod_name)
query_fn = getattr(mod, fn_name)
# Simple timeout mechanism using threading
result = [None]
exception = [None]
def run_model():
try:
result[0] = query_fn(song_ratings)
except Exception as e:
exception[0] = e
thread = threading.Thread(target=run_model)
thread.daemon = True
thread.start()
thread.join(timeout=timeout)
if thread.is_alive():
raise TimeoutError(f"Python model '{model_cfg.get('name', 'unknown')}' timed out after {timeout} seconds")
if exception[0]:
raise exception[0]
return result[0]
def get_recs(model_name: str, song_ratings: List[Dict[str, any]]) -> List[Tuple[str, str]]:
"""
Get recommendations from a model.
Args:
model_name: Name of the model to use
song_ratings: List of song ratings
Returns:
List of (spotify_id, track_name) tuples
"""
cfg = MODELS[model_name]
t = cfg["type"]
if t == "http":
items = call_http(cfg, song_ratings)
elif t == "python":
items = call_python(cfg, song_ratings)
else:
raise ValueError(f"Unknown model type: {t}")
# Handle both old format (List[str]) and new format (List[Tuple[str, str]])
if items and isinstance(items[0], (list, tuple)) and len(items[0]) == 2:
# New format: List[Tuple[str, str]] - (spotify_id, track_name)
result = items
else:
# Old format: List[str] - convert to new format with empty spotify_ids
result = [("", str(i).strip()) for i in items if str(i).strip()]
CACHE[model_name] = result
# persist sparingly
if len(CACHE) % 20 == 0:
save_cache(CACHE)
return result
# ---------------- Logging ----------------
def log_vote(payload: dict):
with VOTES_LOG.open("a", encoding="utf-8") as f:
f.write(json.dumps(payload, ensure_ascii=False) + "\n")
# ---------------- UI helpers ----------------
CSS = """
.card { border: 1px solid #e5e7eb; border-radius: 14px; padding: 12px; text-align: left; }
.card h3 { margin: 0 0 8px 0; font-size: 16px; }
.card .meta { color: #6b7280; font-size: 13px; margin-bottom: 8px; }
.items { font-family: ui-monospace, SFMono-Regular, Menlo, monospace; font-size: 14px; }
.items li { margin: 2px 0; }
#vote-row button { font-weight: 700; }
"""
def render_list(title: str, song: str, items: List[Tuple[str, str]], k: int = TOPK_SHOW) -> str:
"""
Render a list of recommendations with Spotify players.
Args:
title: Title for the recommendation list
song: Song name for context
items: List of (spotify_id, track_name) tuples
k: Number of items to show
Returns:
HTML string with recommendations and embedded Spotify players
"""
if not items:
return f'<div class="card"><h3>{title}</h3><div class="meta">Song: <b>{song}</b></div><em>No items returned.</em></div>'
top = items[:k]
# Create list items with Spotify players
li_items = []
spotify_players = []
for i, (spotify_id, track_name) in enumerate(top):
li_items.append(f"<li>{track_name}</li>")
if spotify_id:
player_html = create_spotify_player_html(spotify_id, width="100%", height="80")
spotify_players.append(f"""
<div style="margin: 10px 0; padding: 10px; border: 1px solid #e5e7eb; border-radius: 8px;">
<h4 style="margin: 0 0 5px 0; font-size: 14px;">{i+1}. {track_name}</h4>
{player_html}
</div>
""")
else:
spotify_players.append(f"""
<div style="margin: 10px 0; padding: 10px; border: 1px solid #e5e7eb; border-radius: 8px;">
<h4 style="margin: 0 0 5px 0; font-size: 14px;">{i+1}. {track_name}</h4>
<p style="color: #6b7280; font-size: 12px;">No preview available</p>
</div>
""")
li = "".join(li_items)
players_html = "".join(spotify_players)
return f"""
<div class="card">
<h3>{title}</h3>
<div class="meta">Song: <b>{song}</b> · Showing top {len(top)}</div>
<ol class="items">{li}</ol>
<div style="margin-top: 15px;">
<h4>🎵 Preview Tracks:</h4>
{players_html}
</div>
</div>
"""
# ---------------- Gradio App ----------------
with gr.Blocks(title="Recommender Arena (Song Ratings → A/B Vote)", css=CSS) as demo:
gr.Markdown("# 🎶 Tune Duel")
gr.Markdown("Rate **your favourite songs** (1-5 stars). Pick two models (or random). Compare the recommendations and vote.")
gr.Markdown("💡 **Tips**: Start typing a song name to see matching tracks, click 🎲 Random to get a random track, or click ▶️ Play to start the Spotify player!")
# Spotify player display at the top
with gr.Row():
spotify_player_display = gr.HTML(label="🎵 Now Playing",
value="<p>Enter a track name and click ▶️ to start playing!</p>")
# Test button to show sample tracks
with gr.Row():
test_btn = gr.Button("🔍 Show Sample Tracks", variant="secondary")
def show_sample_tracks():
"""Show sample tracks for testing"""
sample_tracks = list(VALID_TRACKS)[:5]
return f"<h3>Sample tracks in database:</h3><ul>" + "".join(f"<li>{track}</li>" for track in sample_tracks) + "</ul>"
test_btn.click(show_sample_tracks, outputs=[spotify_player_display])
model_names = sorted(MODELS.keys())
# Song ratings input - using a more flexible approach
with gr.Row():
with gr.Column(scale=14): # main content area
with gr.Row():
song1 = gr.Textbox(label="Song 1", placeholder="e.g., '22 by Taylor Swift'", lines=1, scale=8)
rating1 = gr.Slider(minimum=1, maximum=5, step=1, value=5, label="Rating 1", scale=2)
song1_suggestions = gr.Dropdown(label="Suggestions", choices=[], interactive=True, visible=False, scale=3)
with gr.Column(scale=1, elem_classes="button-col"):
song1_random_btn = gr.Button("🎲", variant="secondary", elem_classes="small-btn")
song1_play_btn = gr.Button("▶️", variant="primary", elem_classes="small-btn")
with gr.Row():
with gr.Column(scale=14):
with gr.Row():
song2 = gr.Textbox(label="Song 2", placeholder="e.g., 'Paranoid Android by Radiohead'", lines=1, scale=8)
rating2 = gr.Slider(minimum=1, maximum=5, step=1, value=5, label="Rating 2", scale=2)
song2_suggestions = gr.Dropdown(label="Suggestions", choices=[], interactive=True, visible=False, scale=3)
with gr.Column(scale=1, elem_classes="button-col"):
song2_random_btn = gr.Button("🎲", variant="secondary", elem_classes="small-btn")
song2_play_btn = gr.Button("▶️", variant="primary", elem_classes="small-btn")
with gr.Row():
with gr.Column(scale=14):
with gr.Row():
song3 = gr.Textbox(label="Song 3", placeholder="e.g., 'Hey Jude by The Beatles'", lines=1, scale=8)
rating3 = gr.Slider(minimum=1, maximum=5, step=1, value=5, label="Rating 3", scale=2)
song3_suggestions = gr.Dropdown(label="Suggestions", choices=[], interactive=True, visible=False, scale=3)
with gr.Column(scale=1, elem_classes="button-col"):
song3_random_btn = gr.Button("🎲", variant="secondary", elem_classes="small-btn")
song3_play_btn = gr.Button("▶️", variant="primary", elem_classes="small-btn")
# Additional songs container (initially hidden)
additional_songs_container = gr.Column(visible=False)
with additional_songs_container:
with gr.Row():
with gr.Column(scale=14):
with gr.Row():
song4 = gr.Textbox(label="Song 4", placeholder="e.g., 'Bohemian Rhapsody by Queen'", lines=1, scale=8)
rating4 = gr.Slider(minimum=1, maximum=5, step=1, value=5, label="Rating 4", scale=2)
song4_suggestions = gr.Dropdown(label="Suggestions", choices=[], interactive=True, visible=False, scale=3)
with gr.Column(scale=1, elem_classes="button-col"):
song4_random_btn = gr.Button("🎲", variant="secondary", elem_classes="small-btn")
song4_play_btn = gr.Button("▶️", variant="primary", elem_classes="small-btn")
with gr.Row():
with gr.Column(scale=14):
with gr.Row():
song5 = gr.Textbox(label="Song 5", placeholder="e.g., 'Stairway to Heaven by Led Zeppelin'", lines=1, scale=8)
rating5 = gr.Slider(minimum=1, maximum=5, step=1, value=5, label="Rating 5", scale=2)
song5_suggestions = gr.Dropdown(label="Suggestions", choices=[], interactive=True, visible=False, scale=3)
with gr.Column(scale=1, elem_classes="button-col"):
song5_random_btn = gr.Button("🎲", variant="secondary",elem_classes="small-btn")
song5_play_btn = gr.Button("▶️", variant="primary", elem_classes="small-btn")
# Add more songs button
add_song_btn = gr.Button("Add More Songs (4-5)", variant="secondary")
# Fill all random button
fill_all_random_btn = gr.Button("🎲 Fill All Random", variant="primary")
def toggle_additional_songs():
return gr.Column(visible=True)
def fill_all_random():
"""Fill all song fields with random tracks"""
return [get_random_track() for _ in range(5)]
add_song_btn.click(toggle_additional_songs, outputs=[additional_songs_container])
fill_all_random_btn.click(fill_all_random, outputs=[song1, song2, song3, song4, song5])
# Real-time track suggestions functions
def update_suggestions(query: str, suggestions_dropdown):
"""Update suggestions dropdown based on query"""
if not query or len(query.strip()) < 2:
return gr.Dropdown(choices=[], visible=False)
matches = find_matching_tracks(query, max_results=8)
if matches:
return gr.Dropdown(choices=matches, visible=True)
else:
return gr.Dropdown(choices=[], visible=False)
def select_suggestion(suggestion: str, textbox):
"""When user selects a suggestion, update the textbox"""
if suggestion:
return suggestion
return textbox
# Set up real-time suggestions for all song inputs
song1.change(update_suggestions, inputs=[song1, song1_suggestions], outputs=[song1_suggestions])
song1_suggestions.change(select_suggestion, inputs=[song1_suggestions, song1], outputs=[song1])
song2.change(update_suggestions, inputs=[song2, song2_suggestions], outputs=[song2_suggestions])
song2_suggestions.change(select_suggestion, inputs=[song2_suggestions, song2], outputs=[song2])
song3.change(update_suggestions, inputs=[song3, song3_suggestions], outputs=[song3_suggestions])
song3_suggestions.change(select_suggestion, inputs=[song3_suggestions, song3], outputs=[song3])
song4.change(update_suggestions, inputs=[song4, song4_suggestions], outputs=[song4_suggestions])
song4_suggestions.change(select_suggestion, inputs=[song4_suggestions, song4], outputs=[song4])
song5.change(update_suggestions, inputs=[song5, song5_suggestions], outputs=[song5_suggestions])
song5_suggestions.change(select_suggestion, inputs=[song5_suggestions, song5], outputs=[song5])
# Random track button handlers
song1_random_btn.click(lambda: get_random_track(), outputs=[song1])
song2_random_btn.click(lambda: get_random_track(), outputs=[song2])
song3_random_btn.click(lambda: get_random_track(), outputs=[song3])
song4_random_btn.click(lambda: get_random_track(), outputs=[song4])
song5_random_btn.click(lambda: get_random_track(), outputs=[song5])
# Play button handlers - start Spotify player
song1_play_btn.click(get_spotify_player, inputs=[song1], outputs=[spotify_player_display])
song2_play_btn.click(get_spotify_player, inputs=[song2], outputs=[spotify_player_display])
song3_play_btn.click(get_spotify_player, inputs=[song3], outputs=[spotify_player_display])
song4_play_btn.click(get_spotify_player, inputs=[song4], outputs=[spotify_player_display])
song5_play_btn.click(get_spotify_player, inputs=[song5], outputs=[spotify_player_display])
with gr.Row():
model_a = gr.Dropdown(choices=model_names, value=random.choice(model_names), label="Model A")
model_b = gr.Dropdown(choices=model_names, value=random.choice(model_names), label="Model B")
rand_pair_btn = gr.Button("Random Pair")
recommend_btn = gr.Button("Recommend") # <-- NEW
with gr.Row():
list_a = gr.HTML()
list_b = gr.HTML()
with gr.Row(elem_id="vote-row"):
btn_a = gr.Button("A Wins", variant="primary")
btn_tie = gr.Button("Tie", variant="secondary")
btn_b = gr.Button("B Wins", variant="primary")
btn_skip = gr.Button("Skip", variant="secondary")
leaderboard = gr.Dataframe(headers=["model", "elo"], interactive=False, label="Live Leaderboard (Elo)") #, height=400)
# states
elo_state = gr.State(load_elo())
last_payload = gr.State({}) # remember last (song, A, B) for logging
def random_pair(cur_a, cur_b):
# ensure distinct
if len(model_names) < 2:
return gr.Warning("Need at least two models.")
a, b = random.sample(model_names, 2)
return a, b
rand_pair_btn.click(random_pair, inputs=[model_a, model_b], outputs=[model_a, model_b])
def render_empty(title: str, msg: str) -> str:
return f"""
<div class="card">
<h3>{title}</h3>
<div class="meta"></div>
<em>{msg}</em>
</div>
"""
def refresh_lists(song1, rating1, song2, rating2, song3, rating3, song4, rating4, song5, rating5, a: str, b: str, elo: dict, prev_payload: dict):
# Parse songs and ratings from the input
song_ratings = []
songs_and_ratings = [(song1, rating1), (song2, rating2), (song3, rating3), (song4, rating4), (song5, rating5)]
# Validate tracks and collect validation messages
validation_messages = []
for song, rating in songs_and_ratings:
if song and song.strip():
is_valid, message = validate_track_name(song, VALID_TRACKS)
if not is_valid:
validation_messages.append(f"'{song}': {message}")
else:
spotify_id = get_spotify_track_id(song.strip())
song_ratings.append({
"song": song.strip(),
"rating": int(rating),
"spotify_id": spotify_id or ""
})
# If no valid songs, warn and keep previous state/UI
if not song_ratings:
gr.Warning("Please enter at least one song with a rating.")
df = leaderboard_df(elo)
if prev_payload:
# keep the previous lists as-is
pa = render_list(prev_payload["A"], f"{len(prev_payload['song_ratings'])} songs", get_recs(prev_payload["A"], prev_payload["song_ratings"]))
pb = render_list(prev_payload["B"], f"{len(prev_payload['song_ratings'])} songs", get_recs(prev_payload["B"], prev_payload["song_ratings"]))
return pa, pb, prev_payload, df
# or show helpful placeholders
empty_a = render_empty("Model A", "Enter songs with ratings and click Recommend.")
empty_b = render_empty("Model B", "Enter songs with ratings and click Recommend.")
return empty_a, empty_b, prev_payload, df
if a == b:
gr.Warning("Pick two different models.")
df = leaderboard_df(elo)
if prev_payload:
pa = render_list(prev_payload["A"], f"{len(prev_payload['song_ratings'])} songs", get_recs(prev_payload["A"], prev_payload["song_ratings"]))
pb = render_list(prev_payload["B"], f"{len(prev_payload['song_ratings'])} songs", get_recs(prev_payload["B"], prev_payload["song_ratings"]))
return pa, pb, prev_payload, df
empty_a = render_empty("Model A", "Pick two different models.")
empty_b = render_empty("Model B", "Pick two different models.")
return empty_a, empty_b, prev_payload, df
# Valid -> fetch and render
try:
items_a = get_recs(a, song_ratings)
items_b = get_recs(b, song_ratings)
except Exception as e:
gr.Warning(f"Failed to get recommendations: {e}")
df = leaderboard_df(elo)
if prev_payload:
pa = render_list(prev_payload["A"], f"{len(prev_payload['song_ratings'])} songs", get_recs(prev_payload["A"], prev_payload["song_ratings"]))
pb = render_list(prev_payload["B"], f"{len(prev_payload['song_ratings'])} songs", get_recs(prev_payload["B"], prev_payload["song_ratings"]))
return pa, pb, prev_payload, df
return render_empty("Model A", "Error fetching."), render_empty("Model B", "Error fetching."), prev_payload, df
html_a = render_list(a, f"{len(song_ratings)} songs", items_a)
html_b = render_list(b, f"{len(song_ratings)} songs", items_b)
df = leaderboard_df(elo)
payload = {"song_ratings": song_ratings, "A": a, "B": b}
return html_a, html_b, payload, df
# Fetch lists whenever inputs change meaningfully
rand_pair_btn.click(
random_pair, inputs=[model_a, model_b], outputs=[model_a, model_b]
)
recommend_btn.click(
refresh_lists,
inputs=[song1, rating1, song2, rating2, song3, rating3, song4, rating4, song5, rating5, model_a, model_b, elo_state, last_payload],
outputs=[list_a, list_b, last_payload, leaderboard],
)
model_a.change(refresh_lists, inputs=[song1, rating1, song2, rating2, song3, rating3, song4, rating4, song5, rating5, model_a, model_b, elo_state], outputs=[list_a, list_b, last_payload, leaderboard])
model_b.change(refresh_lists, inputs=[song1, rating1, song2, rating2, song3, rating3, song4, rating4, song5, rating5, model_a, model_b, elo_state], outputs=[list_a, list_b, last_payload, leaderboard])
def vote(action: str, elo: dict, payload: dict, request: gr.Request):
if not payload:
raise gr.Error("Load recommendations first (enter songs with ratings).")
song_ratings = payload["song_ratings"]; a = payload["A"]; b = payload["B"]
outcome = "Tie" if action == "tie" else ("A" if action == "a" else "B")
# update elo
update_elo(elo, a, b, outcome)
save_elo(elo)
df = leaderboard_df(elo)
# log
log_vote({
"ts": datetime.utcnow().isoformat(),
"client_ip": getattr(request, "client", None).host if request and request.client else None,
"song_ratings": song_ratings, "model_a": a, "model_b": b, "outcome": outcome,
})
return elo, df
btn_a.click(vote, inputs=[gr.State("a"), elo_state, last_payload], outputs=[elo_state, leaderboard])
btn_b.click(vote, inputs=[gr.State("b"), elo_state, last_payload], outputs=[elo_state, leaderboard])
btn_tie.click(vote, inputs=[gr.State("tie"), elo_state, last_payload], outputs=[elo_state, leaderboard])
btn_skip.click(lambda elo: (elo, leaderboard_df(elo)), inputs=[elo_state], outputs=[elo_state, leaderboard])
if __name__ == "__main__":
demo.queue(default_concurrency_limit=20).launch(server_name="0.0.0.0", server_port=7860, share=True)