Spaces:
Sleeping
Sleeping
File size: 3,458 Bytes
7f17fe7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
from fastapi import FastAPI, Request
from transformers import AutoTokenizer, BertForSequenceClassification, BertConfig
from huggingface_hub import hf_hub_download
import torch
import numpy as np
import pickle
import sys
import collections
import os # os ๋ชจ๋ ์ํฌํธ
import psutil # ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋ ํ์ธ์ ์ํด psutil ์ํฌํธ (requirements.txt์ ์ถ๊ฐ ํ์)
app = FastAPI()
device = torch.device("cpu")
# category.pkl ๋ก๋
try:
with open("category.pkl", "rb") as f:
category = pickle.load(f)
print("category.pkl ๋ก๋ ์ฑ๊ณต.")
except FileNotFoundError:
print("Error: category.pkl ํ์ผ์ ์ฐพ์ ์ ์์ต๋๋ค. ํ๋ก์ ํธ ๋ฃจํธ์ ์๋์ง ํ์ธํ์ธ์.")
sys.exit(1)
# ํ ํฌ๋์ด์ ๋ก๋
tokenizer = AutoTokenizer.from_pretrained("skt/kobert-base-v1")
print("ํ ํฌ๋์ด์ ๋ก๋ ์ฑ๊ณต.")
HF_MODEL_REPO_ID = "hiddenFront/TextClassifier"
HF_MODEL_FILENAME = "textClassifierModel.pt"
# --- ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋ ๋ก๊น
์์ ---
process = psutil.Process(os.getpid())
mem_before_model_download = process.memory_info().rss / (1024 * 1024) # MB ๋จ์
print(f"๋ชจ๋ธ ๋ค์ด๋ก๋ ์ ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋: {mem_before_model_download:.2f} MB")
# --- ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋ ๋ก๊น
๋ ---
try:
model_path = hf_hub_download(repo_id=HF_MODEL_REPO_ID, filename=HF_MODEL_FILENAME)
print(f"๋ชจ๋ธ ํ์ผ์ด '{model_path}'์ ์ฑ๊ณต์ ์ผ๋ก ๋ค์ด๋ก๋๋์์ต๋๋ค.")
# --- ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋ ๋ก๊น
์์ ---
mem_after_model_download = process.memory_info().rss / (1024 * 1024) # MB ๋จ์
print(f"๋ชจ๋ธ ๋ค์ด๋ก๋ ํ ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋: {mem_after_model_download:.2f} MB")
# --- ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋ ๋ก๊น
๋ ---
# 1. ๋ชจ๋ธ ์ํคํ
์ฒ ์ ์ (๊ฐ์ค์น๋ ๋ก๋ํ์ง ์๊ณ ๊ตฌ์กฐ๋ง ์ด๊ธฐํ)
config = BertConfig.from_pretrained("skt/kobert-base-v1", num_labels=len(category))
model = BertForSequenceClassification(config)
# 2. ๋ค์ด๋ก๋๋ ํ์ผ์์ state_dict๋ฅผ ๋ก๋
loaded_state_dict = torch.load(model_path, map_location=device)
# 3. ๋ก๋๋ state_dict๋ฅผ ์ ์๋ ๋ชจ๋ธ์ ์ ์ฉ
new_state_dict = collections.OrderedDict()
for k, v in loaded_state_dict.items():
name = k
if name.startswith('module.'):
name = name[7:]
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
# --- ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋ ๋ก๊น
์์ ---
mem_after_model_load = process.memory_info().rss / (1024 * 1024) # MB ๋จ์
print(f"๋ชจ๋ธ ๋ก๋ ๋ฐ state_dict ์ ์ฉ ํ ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋: {mem_after_model_load:.2f} MB")
# --- ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋ ๋ก๊น
๋ ---
model.eval()
print("๋ชจ๋ธ ๋ก๋ ์ฑ๊ณต.")
except Exception as e:
print(f"Error: ๋ชจ๋ธ ๋ค์ด๋ก๋ ๋๋ ๋ก๋ ์ค ์ค๋ฅ ๋ฐ์: {e}")
sys.exit(1)
@app.post("/predict")
async def predict_api(request: Request):
data = await request.json()
text = data.get("text")
if not text:
return {"error": "No text provided", "classification": "null"}
encoded = tokenizer.encode_plus(
text, max_length=64, padding='max_length', truncation=True, return_tensors='pt'
)
with torch.no_grad():
outputs = model(**encoded)
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
predicted = torch.argmax(probs, dim=1).item()
label = list(category.keys())[predicted]
return {"text": text, "classification": label}
|