File size: 3,458 Bytes
7f17fe7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from fastapi import FastAPI, Request
from transformers import AutoTokenizer, BertForSequenceClassification, BertConfig
from huggingface_hub import hf_hub_download
import torch
import numpy as np
import pickle
import sys
import collections
import os # os ๋ชจ๋“ˆ ์ž„ํฌํŠธ
import psutil # ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ ํ™•์ธ์„ ์œ„ํ•ด psutil ์ž„ํฌํŠธ (requirements.txt์— ์ถ”๊ฐ€ ํ•„์š”)

app = FastAPI()
device = torch.device("cpu")

# category.pkl ๋กœ๋“œ
try:
    with open("category.pkl", "rb") as f:
        category = pickle.load(f)
    print("category.pkl ๋กœ๋“œ ์„ฑ๊ณต.")
except FileNotFoundError:
    print("Error: category.pkl ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. ํ”„๋กœ์ ํŠธ ๋ฃจํŠธ์— ์žˆ๋Š”์ง€ ํ™•์ธํ•˜์„ธ์š”.")
    sys.exit(1)

# ํ† ํฌ๋‚˜์ด์ € ๋กœ๋“œ
tokenizer = AutoTokenizer.from_pretrained("skt/kobert-base-v1")
print("ํ† ํฌ๋‚˜์ด์ € ๋กœ๋“œ ์„ฑ๊ณต.")

HF_MODEL_REPO_ID = "hiddenFront/TextClassifier"
HF_MODEL_FILENAME = "textClassifierModel.pt"

# --- ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ ๋กœ๊น… ์‹œ์ž‘ ---
process = psutil.Process(os.getpid())
mem_before_model_download = process.memory_info().rss / (1024 * 1024) # MB ๋‹จ์œ„
print(f"๋ชจ๋ธ ๋‹ค์šด๋กœ๋“œ ์ „ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰: {mem_before_model_download:.2f} MB")
# --- ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ ๋กœ๊น… ๋ ---

try:
    model_path = hf_hub_download(repo_id=HF_MODEL_REPO_ID, filename=HF_MODEL_FILENAME)
    print(f"๋ชจ๋ธ ํŒŒ์ผ์ด '{model_path}'์— ์„ฑ๊ณต์ ์œผ๋กœ ๋‹ค์šด๋กœ๋“œ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.")

    # --- ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ ๋กœ๊น… ์‹œ์ž‘ ---
    mem_after_model_download = process.memory_info().rss / (1024 * 1024) # MB ๋‹จ์œ„
    print(f"๋ชจ๋ธ ๋‹ค์šด๋กœ๋“œ ํ›„ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰: {mem_after_model_download:.2f} MB")
    # --- ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ ๋กœ๊น… ๋ ---

    # 1. ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜ ์ •์˜ (๊ฐ€์ค‘์น˜๋Š” ๋กœ๋“œํ•˜์ง€ ์•Š๊ณ  ๊ตฌ์กฐ๋งŒ ์ดˆ๊ธฐํ™”)
    config = BertConfig.from_pretrained("skt/kobert-base-v1", num_labels=len(category))
    model = BertForSequenceClassification(config)

    # 2. ๋‹ค์šด๋กœ๋“œ๋œ ํŒŒ์ผ์—์„œ state_dict๋ฅผ ๋กœ๋“œ
    loaded_state_dict = torch.load(model_path, map_location=device)

    # 3. ๋กœ๋“œ๋œ state_dict๋ฅผ ์ •์˜๋œ ๋ชจ๋ธ์— ์ ์šฉ
    new_state_dict = collections.OrderedDict()
    for k, v in loaded_state_dict.items():
        name = k
        if name.startswith('module.'):
            name = name[7:]
        new_state_dict[name] = v
    
    model.load_state_dict(new_state_dict)

    # --- ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ ๋กœ๊น… ์‹œ์ž‘ ---
    mem_after_model_load = process.memory_info().rss / (1024 * 1024) # MB ๋‹จ์œ„
    print(f"๋ชจ๋ธ ๋กœ๋“œ ๋ฐ state_dict ์ ์šฉ ํ›„ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰: {mem_after_model_load:.2f} MB")
    # --- ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ ๋กœ๊น… ๋ ---

    model.eval()
    print("๋ชจ๋ธ ๋กœ๋“œ ์„ฑ๊ณต.")
except Exception as e:
    print(f"Error: ๋ชจ๋ธ ๋‹ค์šด๋กœ๋“œ ๋˜๋Š” ๋กœ๋“œ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {e}")
    sys.exit(1)

@app.post("/predict")
async def predict_api(request: Request):
    data = await request.json()
    text = data.get("text")
    if not text:
        return {"error": "No text provided", "classification": "null"}

    encoded = tokenizer.encode_plus(
        text, max_length=64, padding='max_length', truncation=True, return_tensors='pt'
    )

    with torch.no_grad():
        outputs = model(**encoded)
        probs = torch.nn.functional.softmax(outputs.logits, dim=1)
        predicted = torch.argmax(probs, dim=1).item()
    
    label = list(category.keys())[predicted]
    return {"text": text, "classification": label}