Spaces:
Build error
Build error
Update rag_server.py
Browse files- rag_server.py +6 -14
rag_server.py
CHANGED
|
@@ -13,9 +13,9 @@ from transformers import AutoModel
|
|
| 13 |
import streamlit as st
|
| 14 |
|
| 15 |
# --- Konfiguration ---
|
|
|
|
| 16 |
HF_API_TOKEN = os.environ.get("HF_API_TOKEN") # Lesen Sie den Token aus der Umgebungsvariable
|
| 17 |
MODEL_NAME = "dannyk97/mistral-screenplay-model"
|
| 18 |
-
HF_CACHE_DIR = os.environ.get("HF_CACHE_DIR", "/app/cache") #Falls ein Fehler Auftritt, wird der Ordner auf /app/cache gesetzt.
|
| 19 |
|
| 20 |
# --- Hilfsfunktionen ---
|
| 21 |
|
|
@@ -55,18 +55,10 @@ def chunk_text(text, chunk_size=500, chunk_overlap=50):
|
|
| 55 |
)
|
| 56 |
return text_splitter.split_text(text)
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
vector_db = FAISS.from_texts(chunks, embedding=embeddings)
|
| 63 |
-
return vector_db
|
| 64 |
-
except Exception as e:
|
| 65 |
-
print(f"❌ Fehler beim Erstellen der Embeddings: {e}")
|
| 66 |
-
print("Verwende Dummy Embeddings, um fortzufahren (Funktionen sind eingeschränkt).")
|
| 67 |
-
# Verwenden Sie eine einfachere Fallback Lösung
|
| 68 |
-
vector_db = FAISS.from_texts(["fallback text"], HuggingFaceEmbeddings(model_name="all-mpnet-base-v2", cache_folder=cache_folder))
|
| 69 |
-
return vector_db
|
| 70 |
|
| 71 |
# Function to query the vector database and interact with Hugging Face Inference API
|
| 72 |
def query_vector_db(query, vector_db):
|
|
@@ -116,7 +108,7 @@ for link in drive_links:
|
|
| 116 |
|
| 117 |
if all_chunks:
|
| 118 |
# Generate embeddings and store in FAISS
|
| 119 |
-
vector_db = create_embeddings_and_store(all_chunks
|
| 120 |
st.write("Embeddings Generated and Stored Successfully!")
|
| 121 |
|
| 122 |
# User query input
|
|
|
|
| 13 |
import streamlit as st
|
| 14 |
|
| 15 |
# --- Konfiguration ---
|
| 16 |
+
os.environ["HF_HOME"] = "/app/hf_cache" # Verwenden Sie einen absoluten Pfad innerhalb des Containers und erzwingen den Cache!
|
| 17 |
HF_API_TOKEN = os.environ.get("HF_API_TOKEN") # Lesen Sie den Token aus der Umgebungsvariable
|
| 18 |
MODEL_NAME = "dannyk97/mistral-screenplay-model"
|
|
|
|
| 19 |
|
| 20 |
# --- Hilfsfunktionen ---
|
| 21 |
|
|
|
|
| 55 |
)
|
| 56 |
return text_splitter.split_text(text)
|
| 57 |
|
| 58 |
+
def create_embeddings_and_store(chunks):
|
| 59 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 60 |
+
vector_db = FAISS.from_texts(chunks, embedding=embeddings)
|
| 61 |
+
return vector_db
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
# Function to query the vector database and interact with Hugging Face Inference API
|
| 64 |
def query_vector_db(query, vector_db):
|
|
|
|
| 108 |
|
| 109 |
if all_chunks:
|
| 110 |
# Generate embeddings and store in FAISS
|
| 111 |
+
vector_db = create_embeddings_and_store(all_chunks)
|
| 112 |
st.write("Embeddings Generated and Stored Successfully!")
|
| 113 |
|
| 114 |
# User query input
|