Spaces:
Build error
Build error
Update rag_server.py
Browse files- rag_server.py +12 -12
rag_server.py
CHANGED
|
@@ -13,22 +13,22 @@ from transformers import AutoModel
|
|
| 13 |
import streamlit as st
|
| 14 |
|
| 15 |
# --- Konfiguration ---
|
| 16 |
-
os.environ
|
| 17 |
-
HF_API_TOKEN = os.environ.get("HF_API_TOKEN") # Read token from environment variable
|
| 18 |
MODEL_NAME = "dannyk97/mistral-screenplay-model"
|
|
|
|
| 19 |
|
| 20 |
# --- Hilfsfunktionen ---
|
| 21 |
|
| 22 |
def query_huggingface_inference_endpoints(prompt):
|
| 23 |
"""
|
| 24 |
-
|
| 25 |
"""
|
| 26 |
try:
|
| 27 |
client = InferenceClient(token=HF_API_TOKEN)
|
| 28 |
result = client.text_generation(prompt, model=MODEL_NAME)
|
| 29 |
return result
|
| 30 |
except Exception as e:
|
| 31 |
-
return f"
|
| 32 |
|
| 33 |
# Function to download PDF from Google Drive
|
| 34 |
def download_pdf_from_drive(drive_link):
|
|
@@ -56,16 +56,16 @@ def chunk_text(text, chunk_size=500, chunk_overlap=50):
|
|
| 56 |
return text_splitter.split_text(text)
|
| 57 |
|
| 58 |
# Function to create embeddings and store in FAISS
|
| 59 |
-
def create_embeddings_and_store(chunks):
|
| 60 |
try:
|
| 61 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 62 |
vector_db = FAISS.from_texts(chunks, embedding=embeddings)
|
| 63 |
return vector_db
|
| 64 |
except Exception as e:
|
| 65 |
-
print(f"
|
| 66 |
-
print("
|
| 67 |
-
#
|
| 68 |
-
vector_db = FAISS.from_texts(["fallback text"], HuggingFaceEmbeddings(model_name="all-mpnet-base-v2"))
|
| 69 |
return vector_db
|
| 70 |
|
| 71 |
# Function to query the vector database and interact with Hugging Face Inference API
|
|
@@ -77,7 +77,7 @@ def query_vector_db(query, vector_db):
|
|
| 77 |
# Interact with the Text Generation API
|
| 78 |
prompt = f"Nutze diesen Kontext um die Frage zu beantworten: {context}\nFrage: {query}"
|
| 79 |
try:
|
| 80 |
-
output = query_huggingface_inference_endpoints(prompt)
|
| 81 |
return output
|
| 82 |
except Exception as e:
|
| 83 |
return f"FEHLER: {str(e)}"
|
|
@@ -116,7 +116,7 @@ for link in drive_links:
|
|
| 116 |
|
| 117 |
if all_chunks:
|
| 118 |
# Generate embeddings and store in FAISS
|
| 119 |
-
vector_db = create_embeddings_and_store(all_chunks)
|
| 120 |
st.write("Embeddings Generated and Stored Successfully!")
|
| 121 |
|
| 122 |
# User query input
|
|
|
|
| 13 |
import streamlit as st
|
| 14 |
|
| 15 |
# --- Konfiguration ---
|
| 16 |
+
HF_API_TOKEN = os.environ.get("HF_API_TOKEN") # Lesen Sie den Token aus der Umgebungsvariable
|
|
|
|
| 17 |
MODEL_NAME = "dannyk97/mistral-screenplay-model"
|
| 18 |
+
HF_CACHE_DIR = os.environ.get("HF_CACHE_DIR", "/app/cache") #Falls ein Fehler Auftritt, wird der Ordner auf /app/cache gesetzt.
|
| 19 |
|
| 20 |
# --- Hilfsfunktionen ---
|
| 21 |
|
| 22 |
def query_huggingface_inference_endpoints(prompt):
|
| 23 |
"""
|
| 24 |
+
Stellt eine Anfrage an die Hugging Face Inference API.
|
| 25 |
"""
|
| 26 |
try:
|
| 27 |
client = InferenceClient(token=HF_API_TOKEN)
|
| 28 |
result = client.text_generation(prompt, model=MODEL_NAME)
|
| 29 |
return result
|
| 30 |
except Exception as e:
|
| 31 |
+
return f"Fehler bei der Anfrage an Hugging Face API: {e}"
|
| 32 |
|
| 33 |
# Function to download PDF from Google Drive
|
| 34 |
def download_pdf_from_drive(drive_link):
|
|
|
|
| 56 |
return text_splitter.split_text(text)
|
| 57 |
|
| 58 |
# Function to create embeddings and store in FAISS
|
| 59 |
+
def create_embeddings_and_store(chunks, cache_folder=HF_CACHE_DIR):
|
| 60 |
try:
|
| 61 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", cache_folder=cache_folder)
|
| 62 |
vector_db = FAISS.from_texts(chunks, embedding=embeddings)
|
| 63 |
return vector_db
|
| 64 |
except Exception as e:
|
| 65 |
+
print(f"❌ Fehler beim Erstellen der Embeddings: {e}")
|
| 66 |
+
print("Verwende Dummy Embeddings, um fortzufahren (Funktionen sind eingeschränkt).")
|
| 67 |
+
# Verwenden Sie eine einfachere Fallback Lösung
|
| 68 |
+
vector_db = FAISS.from_texts(["fallback text"], HuggingFaceEmbeddings(model_name="all-mpnet-base-v2", cache_folder=cache_folder))
|
| 69 |
return vector_db
|
| 70 |
|
| 71 |
# Function to query the vector database and interact with Hugging Face Inference API
|
|
|
|
| 77 |
# Interact with the Text Generation API
|
| 78 |
prompt = f"Nutze diesen Kontext um die Frage zu beantworten: {context}\nFrage: {query}"
|
| 79 |
try:
|
| 80 |
+
output = query_huggingface_inference_endpoints(prompt)
|
| 81 |
return output
|
| 82 |
except Exception as e:
|
| 83 |
return f"FEHLER: {str(e)}"
|
|
|
|
| 116 |
|
| 117 |
if all_chunks:
|
| 118 |
# Generate embeddings and store in FAISS
|
| 119 |
+
vector_db = create_embeddings_and_store(all_chunks, cache_folder=HF_CACHE_DIR)
|
| 120 |
st.write("Embeddings Generated and Stored Successfully!")
|
| 121 |
|
| 122 |
# User query input
|