phi35-moe-demo / app /model_loader.py
ianshank's picture
πŸš€ Deploy robust modular solution with comprehensive testing and CPU/GPU support
6510698 verified
"""
Model loading module with robust error handling and environment adaptation.
"""
import logging
import torch
from typing import Optional, Tuple, Any
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from .config.model_config import ModelConfig, EnvironmentDetector, DependencyValidator
logger = logging.getLogger(__name__)
class ModelLoader:
"""Handles model loading with environment-specific optimizations."""
def __init__(self):
self.config: Optional[ModelConfig] = None
self.model: Optional[Any] = None
self.tokenizer: Optional[Any] = None
self.pipeline: Optional[Any] = None
self._is_loaded = False
def validate_environment(self) -> bool:
"""Validate that the environment is ready for model loading."""
logger.info("πŸ” Validating environment...")
# Check dependencies
if not DependencyValidator.is_environment_ready():
logger.error("❌ Environment validation failed - missing dependencies")
return False
# Log environment info
env_info = EnvironmentDetector.detect_environment()
logger.info(f"πŸ“Š Environment info: {env_info}")
return True
def create_config(
self,
model_id: Optional[str] = None,
revision: Optional[str] = None
) -> ModelConfig:
"""Create model configuration based on environment."""
logger.info("βš™οΈ Creating model configuration...")
self.config = EnvironmentDetector.create_model_config(model_id, revision)
logger.info(f"πŸ“‹ Model config created:")
logger.info(f" Model ID: {self.config.model_id}")
logger.info(f" Revision: {self.config.revision or 'latest'}")
logger.info(f" Device: {self.config.device_map}")
logger.info(f" Dtype: {self.config.dtype}")
logger.info(f" Attention: {self.config.attn_implementation}")
return self.config
def load_tokenizer(self) -> bool:
"""Load the tokenizer."""
if not self.config:
logger.error("❌ No configuration available")
return False
try:
logger.info("πŸ“ Loading tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(
self.config.model_id,
trust_remote_code=self.config.trust_remote_code,
revision=self.config.revision
)
logger.info("βœ… Tokenizer loaded successfully")
return True
except Exception as e:
logger.error(f"❌ Failed to load tokenizer: {e}")
return False
def load_model(self) -> bool:
"""Load the model with environment-specific configuration."""
if not self.config:
logger.error("❌ No configuration available")
return False
try:
logger.info("πŸ€– Loading model...")
logger.info(f" This may take several minutes for {self.config.model_id}")
# Load model with configuration
self.model = AutoModelForCausalLM.from_pretrained(
self.config.model_id,
trust_remote_code=self.config.trust_remote_code,
revision=self.config.revision,
attn_implementation=self.config.attn_implementation,
dtype=self.config.dtype, # Use dtype instead of deprecated torch_dtype
device_map=self.config.device_map,
low_cpu_mem_usage=self.config.low_cpu_mem_usage
).eval()
logger.info("βœ… Model loaded successfully")
# Log model info
if hasattr(self.model, 'config'):
logger.info(f"πŸ“Š Model info:")
logger.info(f" Architecture: {getattr(self.model.config, 'architectures', 'unknown')}")
logger.info(f" Parameters: ~{self.model.num_parameters() / 1e9:.1f}B")
return True
except Exception as e:
logger.error(f"❌ Failed to load model: {e}")
return False
def create_pipeline(self) -> bool:
"""Create inference pipeline."""
if not self.model or not self.tokenizer:
logger.error("❌ Model or tokenizer not loaded")
return False
try:
logger.info("πŸ”§ Creating inference pipeline...")
self.pipeline = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
dtype=self.config.dtype, # Use dtype instead of deprecated torch_dtype
device_map=self.config.device_map,
trust_remote_code=self.config.trust_remote_code
)
logger.info("βœ… Pipeline created successfully")
return True
except Exception as e:
logger.error(f"❌ Failed to create pipeline: {e}")
return False
def load_complete_model(
self,
model_id: Optional[str] = None,
revision: Optional[str] = None
) -> bool:
"""Load complete model (tokenizer + model + pipeline)."""
logger.info("πŸš€ Starting complete model loading process...")
try:
# Validate environment
if not self.validate_environment():
return False
# Create configuration
self.create_config(model_id, revision)
# Load components in order
if not self.load_tokenizer():
return False
if not self.load_model():
return False
if not self.create_pipeline():
return False
# Run smoke test
if not self.smoke_test():
logger.warning("⚠️ Smoke test failed, but model appears loaded")
self._is_loaded = True
logger.info("πŸŽ‰ Model loading completed successfully!")
return True
except Exception as e:
logger.error(f"❌ Complete model loading failed: {e}")
return False
def smoke_test(self) -> bool:
"""Run a quick smoke test to verify model works."""
if not self.pipeline:
return False
try:
logger.info("πŸ§ͺ Running smoke test...")
# Simple test generation
test_input = "Hello"
result = self.pipeline(
test_input,
max_new_tokens=4,
do_sample=False,
pad_token_id=self.tokenizer.eos_token_id
)
if result and len(result) > 0:
logger.info("βœ… Smoke test passed")
return True
else:
logger.warning("⚠️ Smoke test returned empty result")
return False
except Exception as e:
logger.warning(f"⚠️ Smoke test failed: {e}")
return False
@property
def is_loaded(self) -> bool:
"""Check if model is fully loaded and ready."""
return self._is_loaded and self.pipeline is not None
def get_model_info(self) -> dict:
"""Get information about the loaded model."""
if not self.is_loaded:
return {"status": "not_loaded"}
info = {
"status": "loaded",
"model_id": self.config.model_id,
"revision": self.config.revision,
"device": self.config.device_map,
"dtype": str(self.config.dtype),
"attention": self.config.attn_implementation,
"device_info": self.config.device_info
}
if hasattr(self.model, 'config'):
info["architecture"] = getattr(self.model.config, 'architectures', 'unknown')
info["parameters"] = f"~{self.model.num_parameters() / 1e9:.1f}B"
return info