mbellan's picture
Initial deployment
c3efd49
"""Metrics tracking for training monitoring."""
import torch
import numpy as np
from typing import Dict, Any, List, Optional
from collections import defaultdict
import logging
import json
from pathlib import Path
logger = logging.getLogger(__name__)
class MetricsTracker:
"""
Tracks and aggregates training metrics.
Logs rewards, losses, learning rates, GPU memory, and custom metrics.
"""
def __init__(self, log_dir: str = "logs"):
"""
Initialize metrics tracker.
Args:
log_dir: Directory to save metric logs
"""
self.log_dir = Path(log_dir)
self.log_dir.mkdir(parents=True, exist_ok=True)
# Storage for metrics
self.metrics = defaultdict(list)
self.step_counter = 0
logger.info(f"MetricsTracker initialized: log_dir={log_dir}")
def log_metric(
self,
name: str,
value: float,
step: Optional[int] = None
) -> None:
"""
Log a single metric value.
Args:
name: Metric name
value: Metric value
step: Optional step number (uses internal counter if not provided)
"""
if step is None:
step = self.step_counter
self.metrics[name].append({
'step': step,
'value': float(value)
})
def log_metrics(
self,
metrics: Dict[str, float],
step: Optional[int] = None
) -> None:
"""
Log multiple metrics at once.
Args:
metrics: Dictionary of metric names and values
step: Optional step number
"""
if step is None:
step = self.step_counter
for name, value in metrics.items():
self.log_metric(name, value, step)
self.step_counter += 1
def log_training_metrics(
self,
episode: int,
reward: float,
loss: float,
learning_rate: float,
**kwargs
) -> None:
"""
Log standard training metrics.
Args:
episode: Episode number
reward: Episode reward
loss: Training loss
learning_rate: Current learning rate
**kwargs: Additional metrics
"""
metrics = {
'reward': reward,
'loss': loss,
'learning_rate': learning_rate,
**kwargs
}
self.log_metrics(metrics, step=episode)
def log_gpu_memory(self, step: Optional[int] = None) -> None:
"""
Log GPU memory usage.
Args:
step: Optional step number
"""
if torch.cuda.is_available():
allocated = torch.cuda.memory_allocated() / (1024 ** 2) # MB
reserved = torch.cuda.memory_reserved() / (1024 ** 2) # MB
self.log_metric('gpu_memory_allocated_mb', allocated, step)
self.log_metric('gpu_memory_reserved_mb', reserved, step)
def get_metric(self, name: str) -> List[Dict[str, Any]]:
"""
Get all values for a specific metric.
Args:
name: Metric name
Returns:
List of {step, value} dictionaries
"""
return self.metrics.get(name, [])
def get_latest_value(self, name: str) -> Optional[float]:
"""
Get the most recent value for a metric.
Args:
name: Metric name
Returns:
Latest value or None
"""
values = self.metrics.get(name, [])
if values:
return values[-1]['value']
return None
def get_metric_statistics(self, name: str) -> Dict[str, float]:
"""
Get statistics for a metric.
Args:
name: Metric name
Returns:
Dictionary with mean, std, min, max
"""
values = [entry['value'] for entry in self.metrics.get(name, [])]
if not values:
return {
'count': 0,
'mean': 0.0,
'std': 0.0,
'min': 0.0,
'max': 0.0
}
return {
'count': len(values),
'mean': float(np.mean(values)),
'std': float(np.std(values)),
'min': float(np.min(values)),
'max': float(np.max(values))
}
def get_all_metrics(self) -> Dict[str, List[Dict[str, Any]]]:
"""
Get all tracked metrics.
Returns:
Dictionary of all metrics
"""
return dict(self.metrics)
def get_metric_names(self) -> List[str]:
"""
Get names of all tracked metrics.
Returns:
List of metric names
"""
return list(self.metrics.keys())
def aggregate_metrics(
self,
window_size: int = 10
) -> Dict[str, Dict[str, float]]:
"""
Aggregate metrics over a sliding window.
Args:
window_size: Size of sliding window
Returns:
Dictionary of aggregated metrics
"""
aggregated = {}
for name, values in self.metrics.items():
if len(values) >= window_size:
recent_values = [v['value'] for v in values[-window_size:]]
aggregated[name] = {
'mean': float(np.mean(recent_values)),
'std': float(np.std(recent_values)),
'min': float(np.min(recent_values)),
'max': float(np.max(recent_values))
}
return aggregated
def save_metrics(self, filename: str = "metrics.json") -> None:
"""
Save metrics to JSON file.
Args:
filename: Output filename
"""
output_path = self.log_dir / filename
with open(output_path, 'w') as f:
json.dump(dict(self.metrics), f, indent=2)
logger.info(f"Metrics saved to {output_path}")
def load_metrics(self, filename: str = "metrics.json") -> None:
"""
Load metrics from JSON file.
Args:
filename: Input filename
"""
input_path = self.log_dir / filename
if not input_path.exists():
raise FileNotFoundError(f"Metrics file not found: {input_path}")
with open(input_path, 'r') as f:
loaded_metrics = json.load(f)
self.metrics = defaultdict(list, loaded_metrics)
logger.info(f"Metrics loaded from {input_path}")
def reset(self) -> None:
"""Reset all metrics."""
self.metrics.clear()
self.step_counter = 0
logger.info("Metrics reset")
def summary(self) -> Dict[str, Any]:
"""
Generate summary of all metrics.
Returns:
Summary dictionary
"""
summary = {
'total_steps': self.step_counter,
'num_metrics': len(self.metrics),
'metrics': {}
}
for name in self.metrics.keys():
summary['metrics'][name] = self.get_metric_statistics(name)
return summary