Spaces:
Running
Running
File size: 12,564 Bytes
65d7391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
from __future__ import annotations
import logging
import os
import shutil
import subprocess
import tempfile
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional
import numpy as np
from PIL import Image
LOGGER = logging.getLogger(__name__)
class TruForUnavailableError(RuntimeError):
"""Raised when the TruFor assets are missing or inference fails."""
@dataclass
class TruForResult:
score: Optional[float]
map_overlay: Optional[Image.Image]
confidence_overlay: Optional[Image.Image]
raw_scores: Dict[str, float]
class TruForEngine:
"""Wrapper that executes TruFor inference through docker or python backends."""
def __init__(
self,
repo_root: Optional[Path] = None,
weights_path: Optional[Path] = None,
device: str = "cpu",
) -> None:
self.base_dir = Path(__file__).resolve().parent
self.device = device
self.backend: Optional[str] = None
self.status_message = "TruFor backend not initialized."
backend_pref = os.environ.get("TRUFOR_BACKEND", "auto").lower()
if backend_pref not in {"auto", "native", "docker"}:
backend_pref = "auto"
errors: list[str] = []
if backend_pref in {"auto", "native"}:
try:
self._configure_native_backend(repo_root, weights_path)
self.backend = "native"
self.status_message = "TruFor ready (bundled python backend)."
except TruForUnavailableError as exc:
errors.append(f"Native backend unavailable: {exc}")
if backend_pref == "native":
raise
if self.backend is None and backend_pref in {"auto", "docker"}:
try:
self._configure_docker_backend()
self.backend = "docker"
self.status_message = f'TruFor ready (docker image "{self.docker_image}").'
except TruForUnavailableError as exc:
errors.append(f"Docker backend unavailable: {exc}")
if backend_pref == "docker":
raise
if self.backend is None:
raise TruForUnavailableError(" | ".join(errors) if errors else "TruFor backend unavailable.")
# ------------------------------------------------------------------
# Backend configuration helpers
# ------------------------------------------------------------------
def _configure_docker_backend(self) -> None:
if shutil.which("docker") is None:
raise TruForUnavailableError("docker CLI not found on PATH.")
test_docker_dir = self.base_dir / "test_docker"
if not test_docker_dir.exists():
raise TruForUnavailableError("test_docker directory not found in workspace.")
image_name = os.environ.get("TRUFOR_DOCKER_IMAGE", "trufor")
inspect = subprocess.run(
["docker", "image", "inspect", image_name],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
check=False,
)
if inspect.returncode != 0:
raise TruForUnavailableError(
f'Docker image "{image_name}" not found. Build it with "bash test_docker/docker_build.sh".'
)
weights_candidate = Path(os.environ.get("TRUFOR_DOCKER_WEIGHTS", self.base_dir / "weights")).expanduser()
weight_file = weights_candidate / "trufor.pth.tar"
self.docker_weights_dir: Optional[Path]
self.docker_weights_dir = weight_file.parent if weight_file.exists() else None
self.docker_runtime = os.environ.get("TRUFOR_DOCKER_RUNTIME")
gpu_pref = os.environ.get("TRUFOR_DOCKER_GPU")
if gpu_pref is None:
gpu_pref = "-1" if self.device == "cpu" else "0"
self.docker_gpu = gpu_pref
gpus_arg = os.environ.get("TRUFOR_DOCKER_GPUS_ARG")
if not gpus_arg and gpu_pref not in {"-1", "cpu", "none"}:
gpus_arg = "all"
self.docker_gpus_arg = gpus_arg
self.docker_image = image_name
def _configure_native_backend(self, _repo_root: Optional[Path], weights_path: Optional[Path]) -> None:
try:
from trufor_native import TruForBundledModel
except ImportError as exc: # pragma: no cover - packaging guard
raise TruForUnavailableError("Bundled TruFor modules are not available.") from exc
default_weights = self.base_dir / "weights" / "trufor.pth.tar"
weight_candidate = weights_path or os.environ.get("TRUFOR_WEIGHTS") or default_weights
weight_path = Path(weight_candidate).expanduser()
if not weight_path.exists():
raise TruForUnavailableError(
f"TruFor weights missing at {weight_path}. Place trufor.pth.tar under weights/ or set TRUFOR_WEIGHTS."
)
try:
self.native_model = TruForBundledModel(weight_path, device=self.device)
except Exception as exc: # pragma: no cover - propagate detailed failure
raise TruForUnavailableError(f"Failed to initialise bundled TruFor model: {exc}") from exc
# ------------------------------------------------------------------
# Public API
# ------------------------------------------------------------------
def infer(self, image: Image.Image) -> TruForResult:
if image is None:
raise TruForUnavailableError("No image supplied to TruFor inference.")
if self.backend == "docker":
return self._infer_docker(image)
if self.backend == "native":
return self._infer_native(image)
raise TruForUnavailableError("TruFor backend not configured.")
# ------------------------------------------------------------------
# Inference helpers
# ------------------------------------------------------------------
def _infer_native(self, image: Image.Image) -> TruForResult:
outputs = self.native_model.predict(image)
overlays: Dict[str, Optional[Image.Image]] = {"map": None, "conf": None}
try:
overlays["map"] = self._apply_heatmap(image, outputs.tamper_map)
except Exception as exc: # pragma: no cover - visualisation fallback
LOGGER.debug("Failed to build tamper heatmap: %s", exc)
if outputs.confidence_map is not None:
try:
overlays["conf"] = self._apply_heatmap(image, outputs.confidence_map)
except Exception as exc: # pragma: no cover
LOGGER.debug("Failed to build confidence heatmap: %s", exc)
raw_scores: Dict[str, float] = {
"tamper_mean": float(np.mean(outputs.tamper_map)),
"tamper_max": float(np.max(outputs.tamper_map)),
}
if outputs.confidence_map is not None:
raw_scores["confidence_mean"] = float(np.mean(outputs.confidence_map))
raw_scores["confidence_max"] = float(np.max(outputs.confidence_map))
if outputs.detection_score is not None:
raw_scores["tamper_score"] = float(outputs.detection_score)
return TruForResult(
score=outputs.detection_score,
map_overlay=overlays["map"],
confidence_overlay=overlays["conf"],
raw_scores=raw_scores,
)
def _infer_docker(self, image: Image.Image) -> TruForResult:
with tempfile.TemporaryDirectory(prefix="trufor_docker_") as workdir:
workdir_path = Path(workdir)
input_dir = workdir_path / "data"
output_dir = workdir_path / "data_out"
input_dir.mkdir(parents=True, exist_ok=True)
output_dir.mkdir(parents=True, exist_ok=True)
input_path = input_dir / "input.png"
image.convert("RGB").save(input_path)
cmd = ["docker", "run", "--rm"]
if self.docker_runtime:
cmd.extend(["--runtime", self.docker_runtime])
gpu_flag = str(self.docker_gpu)
if gpu_flag.lower() in {"cpu", "none"}:
gpu_flag = "-1"
if gpu_flag != "-1" and self.docker_gpus_arg:
cmd.extend(["--gpus", self.docker_gpus_arg])
cmd.extend([
"-v",
f"{input_dir.resolve()}:/data:ro",
"-v",
f"{output_dir.resolve()}:/data_out:rw",
])
if self.docker_weights_dir is not None:
cmd.extend([
"-v",
f"{self.docker_weights_dir.resolve()}:/weights:ro",
])
cmd.append(self.docker_image)
cmd.extend(
[
"-gpu",
gpu_flag,
"-in",
"data/input.png",
"-out",
"data_out",
]
)
LOGGER.debug("Running TruFor docker command: %s", " ".join(cmd))
result = subprocess.run(
cmd,
text=True,
capture_output=True,
check=False,
)
return self._process_results(result, output_dir, image)
# ------------------------------------------------------------------
# Result parsing
# ------------------------------------------------------------------
def _process_results(self, run_result: subprocess.CompletedProcess[str], output_dir: Path, image: Image.Image) -> TruForResult:
if run_result.returncode != 0:
stderr_tail = "\n".join(run_result.stderr.strip().splitlines()[-8:]) if run_result.stderr else ""
LOGGER.error("TruFor stderr: %s", stderr_tail)
raise TruForUnavailableError(
"TruFor inference failed. Inspect dependencies and stderr:\n" + stderr_tail
)
npz_files = list(output_dir.rglob("*.npz"))
if not npz_files:
stdout_tail = "\n".join(run_result.stdout.strip().splitlines()[-8:]) if run_result.stdout else ""
raise TruForUnavailableError(
"TruFor inference produced no output files. Stdout tail:\n" + stdout_tail
)
data = np.load(npz_files[0], allow_pickle=False)
tamper_map = data.get("map")
conf_map = data.get("conf")
score = float(data["score"]) if "score" in data.files else None
overlays: Dict[str, Optional[Image.Image]] = {"map": None, "conf": None}
try:
overlays["map"] = self._apply_heatmap(image, tamper_map) if tamper_map is not None else None
except Exception as exc: # pragma: no cover
LOGGER.debug("Failed to build tamper heatmap: %s", exc)
try:
overlays["conf"] = self._apply_heatmap(image, conf_map) if conf_map is not None else None
except Exception as exc: # pragma: no cover
LOGGER.debug("Failed to build confidence heatmap: %s", exc)
raw_scores: Dict[str, float] = {}
if score is not None:
raw_scores["tamper_score"] = score
if tamper_map is not None:
raw_scores["tamper_mean"] = float(np.mean(tamper_map))
raw_scores["tamper_max"] = float(np.max(tamper_map))
if conf_map is not None:
raw_scores["confidence_mean"] = float(np.mean(conf_map))
raw_scores["confidence_max"] = float(np.max(conf_map))
return TruForResult(
score=score,
map_overlay=overlays["map"],
confidence_overlay=overlays["conf"],
raw_scores=raw_scores,
)
@staticmethod
def _apply_heatmap(base: Image.Image, data: np.ndarray, alpha: float = 0.55) -> Image.Image:
base_rgb = base.convert("RGB")
if data is None or data.ndim != 2:
raise ValueError("Expected a 2D map from TruFor")
data = np.asarray(data, dtype=np.float32)
if np.allclose(data.max(), data.min()):
norm = np.zeros_like(data, dtype=np.float32)
else:
norm = (data - data.min()) / (data.max() - data.min())
heat = np.zeros((*norm.shape, 3), dtype=np.uint8)
heat[..., 0] = np.clip(norm * 255, 0, 255).astype(np.uint8)
heat[..., 1] = np.clip(np.sqrt(norm) * 255, 0, 255).astype(np.uint8)
heat[..., 2] = np.clip((1.0 - norm) * 255, 0, 255).astype(np.uint8)
heat_img = Image.fromarray(heat, mode="RGB").resize(base_rgb.size, Image.BILINEAR)
return Image.blend(base_rgb, heat_img, alpha)
|