Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,346 Bytes
f9a6349 f71f431 f9a6349 888f9e4 f9a6349 17f21ca f9a6349 17f21ca f9a6349 17f21ca f9a6349 17f21ca f9a6349 17f21ca f9a6349 17f21ca f9a6349 17f21ca f9a6349 17f21ca f9a6349 17f21ca f9a6349 17f21ca f9a6349 17f21ca f9a6349 17f21ca f9a6349 17f21ca f9a6349 17f21ca f9a6349 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
from pathlib import Path
from collections.abc import Mapping, Sequence
from functools import lru_cache
import inspect
import shutil
import tempfile
import os
import sys
# Add src/ to sys.path so LASER, video-sam2, GroundingDINO are importable
current_dir = Path(__file__).resolve().parent
src_dir = current_dir / "src"
if src_dir.is_dir() and str(src_dir) not in sys.path:
sys.path.insert(0, str(src_dir))
import spaces # <-- ZeroGPU integration
import gradio as gr
import torch
from transformers import pipeline # not strictly necessary, but fine
# -----------------------------
# Environment / diagnostics
# -----------------------------
os.environ["GRADIO_TEMP_DIR"] = str(Path(__file__).parent / "gradio_temp")
os.environ["OPENAI_API_KEY"] = "test"
os.environ["OMP_NUM_THREADS"] = "4"
print("All imports finished")
print(f"Python version: {sys.version}")
print(f"PyTorch version: {torch.__version__}")
print(f"CUDA available: {torch.cuda.is_available()}")
print(f"CUDA version: {torch.version.cuda}")
print(f"cuDNN version: {torch.backends.cudnn.version()}")
print(f"Number of GPUs: {torch.cuda.device_count()}")
if torch.cuda.is_available():
for i in range(torch.cuda.device_count()):
print(f"GPU {i}: {torch.cuda.get_device_name(i)}")
print(
f" Memory: {torch.cuda.get_device_properties(i).total_memory / 1e9:.2f} GB"
)
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
os.environ["TORCH_DTYPE"] = "float32"
torch.set_default_dtype(torch.float32)
current_dir = Path(__file__).resolve().parent
# For Spaces, assume checkpoints live alongside app.py or in a "checkpoints" subdir.
# If you keep them next to app.py locally, this still works.
# NOTE: SAM2 config uses Hydra, so we use just the filename (it searches in sam2/configs/)
sam_config_path = "sam2_hiera_t.yaml" # Hydra will find this in sam2/configs/
sam_checkpoint_path = str(current_dir / "sam2_hiera_tiny.pt")
gd_config_path = str(current_dir / "GroundingDINO_SwinT_OGC.py")
gd_checkpoint_path = str(current_dir / "groundingdino_swint_ogc.pth")
visualization_dir = str(current_dir / "outputs")
print(
f"Setting up paths: {sam_config_path}, {sam_checkpoint_path}, {gd_config_path}, {gd_checkpoint_path}"
)
def format_summary(summary, binary_confidence_threshold=0.8):
"""
Format the summary dictionary into a readable markdown string.
Filters binary relations by confidence threshold.
"""
if not summary or not isinstance(summary, dict):
return "# Detection Summary\n\nNo events detected or processing in progress..."
output_lines = ["# Detection Summary\n"]
has_content = False
# Categorical keywords
if "categorical_keywords" in summary and summary["categorical_keywords"]:
output_lines.append("## Categorical Keywords\n")
cate = summary["categorical_keywords"]
if isinstance(cate, dict) and cate:
has_content = True
for kw, info in cate.items():
output_lines.append(f"**{kw}**")
if isinstance(info, dict):
for key, val in info.items():
output_lines.append(f" - {key}: {val}")
else:
output_lines.append(f" - {info}")
output_lines.append("")
elif isinstance(cate, list) and cate:
has_content = True
for item in cate:
output_lines.append(f"- {item}")
output_lines.append("")
# Unary keywords
if "unary_keywords" in summary and summary["unary_keywords"]:
output_lines.append("## Unary Keywords\n")
unary = summary["unary_keywords"]
if isinstance(unary, dict) and unary:
has_content = True
for kw, info in unary.items():
output_lines.append(f"**{kw}**")
if isinstance(info, dict):
for key, val in info.items():
output_lines.append(f" - {key}: {val}")
else:
output_lines.append(f" - {info}")
output_lines.append("")
elif isinstance(unary, list) and unary:
has_content = True
for item in unary:
output_lines.append(f"- {item}")
output_lines.append("")
# Binary keywords - show ALL binary relations for debugging
print(f"DEBUG: Checking binary_keywords...")
print(f" 'binary_keywords' in summary: {'binary_keywords' in summary}")
if 'binary_keywords' in summary:
print(f" summary['binary_keywords'] truthy: {bool(summary['binary_keywords'])}")
print(f" summary['binary_keywords'] type: {type(summary['binary_keywords'])}")
print(f" summary['binary_keywords'] value: {summary['binary_keywords']}")
if "binary_keywords" in summary and summary["binary_keywords"]:
output_lines.append(f"## Binary Keywords\n")
binary = summary["binary_keywords"]
print(f"DEBUG: Processing binary keywords, type: {type(binary)}, length: {len(binary) if isinstance(binary, (dict, list)) else 'N/A'}")
if isinstance(binary, dict) and binary:
has_content = True
# Show all binary relations, sorted by confidence
binary_items = []
for kw, info in binary.items():
if isinstance(info, dict):
confidence = info.get("confidence", info.get("score", 0))
binary_items.append((kw, info, confidence))
else:
binary_items.append((kw, info, 0))
# Sort by confidence descending
binary_items.sort(key=lambda x: x[2], reverse=True)
high_conf_count = 0
low_conf_count = 0
# Show high confidence items first
output_lines.append(f"### High Confidence (≥ {binary_confidence_threshold})\n")
for kw, info, confidence in binary_items:
if confidence >= binary_confidence_threshold:
high_conf_count += 1
if isinstance(info, dict):
output_lines.append(f"**{kw}** (confidence: {confidence:.2f})")
for key, val in info.items():
if key not in ["confidence", "score"]:
output_lines.append(f" - {key}: {val}")
else:
output_lines.append(f"**{kw}**: {info}")
output_lines.append("")
if high_conf_count == 0:
output_lines.append(f"*No binary relations found with confidence ≥ {binary_confidence_threshold}*\n")
# Show lower confidence items for debugging
output_lines.append(f"### Lower Confidence (< {binary_confidence_threshold})\n")
for kw, info, confidence in binary_items:
if confidence < binary_confidence_threshold:
low_conf_count += 1
if isinstance(info, dict):
output_lines.append(f"**{kw}** (confidence: {confidence:.2f})")
for key, val in info.items():
if key not in ["confidence", "score"]:
output_lines.append(f" - {key}: {val}")
else:
output_lines.append(f"**{kw}**: {info}")
output_lines.append("")
if low_conf_count == 0:
output_lines.append(f"*No binary relations found with confidence < {binary_confidence_threshold}*\n")
output_lines.append(f"**Total binary relations detected: {len(binary_items)}**\n")
elif isinstance(binary, list) and binary:
has_content = True
for item in binary:
output_lines.append(f"- {item}")
output_lines.append("")
# Object pairs - show ALL object pair interactions for debugging
print(f"DEBUG: Checking object_pairs...")
print(f" 'object_pairs' in summary: {'object_pairs' in summary}")
if 'object_pairs' in summary:
print(f" summary['object_pairs'] truthy: {bool(summary['object_pairs'])}")
print(f" summary['object_pairs'] type: {type(summary['object_pairs'])}")
print(f" summary['object_pairs'] value: {summary['object_pairs']}")
if "object_pairs" in summary and summary["object_pairs"]:
output_lines.append(f"## Object Pair Interactions\n")
pairs = summary["object_pairs"]
print(f"DEBUG: Processing object pairs, type: {type(pairs)}, length: {len(pairs) if isinstance(pairs, (dict, list)) else 'N/A'}")
if isinstance(pairs, dict) and pairs:
has_content = True
# Show all object pairs, sorted by confidence
pair_items = []
for pair, info in pairs.items():
if isinstance(info, dict):
confidence = info.get("confidence", info.get("score", 0))
pair_items.append((pair, info, confidence))
else:
pair_items.append((pair, info, 0))
# Sort by confidence descending
pair_items.sort(key=lambda x: x[2], reverse=True)
high_conf_count = 0
low_conf_count = 0
# Show high confidence items first
output_lines.append(f"### High Confidence (≥ {binary_confidence_threshold})\n")
for pair, info, confidence in pair_items:
if confidence >= binary_confidence_threshold:
high_conf_count += 1
if isinstance(info, dict):
output_lines.append(f"**{pair}** (confidence: {confidence:.2f})")
for key, val in info.items():
if key not in ["confidence", "score"]:
output_lines.append(f" - {key}: {val}")
else:
output_lines.append(f"**{pair}**: {info}")
output_lines.append("")
if high_conf_count == 0:
output_lines.append(f"*No object pairs found with confidence ≥ {binary_confidence_threshold}*\n")
# Show lower confidence items for debugging
output_lines.append(f"### Lower Confidence (< {binary_confidence_threshold})\n")
for pair, info, confidence in pair_items:
if confidence < binary_confidence_threshold:
low_conf_count += 1
if isinstance(info, dict):
output_lines.append(f"**{pair}** (confidence: {confidence:.2f})")
for key, val in info.items():
if key not in ["confidence", "score"]:
output_lines.append(f" - {key}: {val}")
else:
output_lines.append(f"**{pair}**: {info}")
output_lines.append("")
if low_conf_count == 0:
output_lines.append(f"*No object pairs found with confidence < {binary_confidence_threshold}*\n")
output_lines.append(f"**Total object pairs detected: {len(pair_items)}**\n")
elif isinstance(pairs, list) and pairs:
has_content = True
for item in pairs:
output_lines.append(f"- {item}")
output_lines.append("")
# If no content was added, show the raw summary for debugging
if not has_content:
output_lines.append("## Raw Summary Data\n")
output_lines.append("```json")
import json
output_lines.append(json.dumps(summary, indent=2, default=str))
output_lines.append("```")
return "\n".join(output_lines)
@lru_cache(maxsize=1)
def _load_vine_pipeline():
"""
Lazy-load and cache the Vine pipeline so we don't re-download/rebuild it on every request.
"""
from vine_hf import VineConfig, VineModel, VinePipeline
config = VineConfig(
segmentation_method="grounding_dino_sam2",
model_name="openai/clip-vit-base-patch32",
use_hf_repo=True,
model_repo="KevinX-Penn28/testing",
box_threshold=0.35,
text_threshold=0.25,
target_fps=1, # default 1 FPS
topk_cate=5,
white_alpha=0.3,
visualization_dir=visualization_dir,
visualize=True,
debug_visualizations=False,
device="cuda",
categorical_pool="max",
)
model = VineModel(config)
return VinePipeline(
model=model,
tokenizer=None,
sam_config_path=sam_config_path,
sam_checkpoint_path=sam_checkpoint_path,
gd_config_path=gd_config_path,
gd_checkpoint_path=gd_checkpoint_path,
device="cuda",
trust_remote_code=True,
)
@spaces.GPU(duration=120) # Up to ~5 minutes of H200 ZeroGPU time per call
def process_video(
video_file,
categorical_keywords,
unary_keywords,
binary_keywords,
output_fps,
box_threshold,
text_threshold,
binary_confidence_threshold,
):
vine_pipe = _load_vine_pipeline()
# Normalize incoming video input to a file path
if isinstance(video_file, dict):
video_file = (
video_file.get("name")
or video_file.get("filepath")
or video_file.get("data")
)
if not isinstance(video_file, (str, Path)):
raise ValueError(f"Unsupported video input type: {type(video_file)}")
categorical_keywords = (
[kw.strip() for kw in categorical_keywords.split(",")]
if categorical_keywords
else []
)
unary_keywords = (
[kw.strip() for kw in unary_keywords.split(",")] if unary_keywords else []
)
binary_keywords = (
[kw.strip() for kw in binary_keywords.split(",")] if binary_keywords else []
)
# Debug: Print what we're sending to the pipeline
print("\n" + "=" * 80)
print("INPUT TO VINE PIPELINE:")
print(f" categorical_keywords: {categorical_keywords}")
print(f" unary_keywords: {unary_keywords}")
print(f" binary_keywords: {binary_keywords}")
print("=" * 80 + "\n")
# Object pairs is now optional - empty list will auto-generate all pairs in vine_model.py
object_pairs = []
results = vine_pipe(
inputs=video_file,
categorical_keywords=categorical_keywords,
unary_keywords=unary_keywords,
binary_keywords=binary_keywords,
object_pairs=object_pairs,
segmentation_method="grounding_dino_sam2",
return_top_k=5,
include_visualizations=True,
debug_visualizations=False,
device="cuda",
box_threshold=box_threshold,
text_threshold=text_threshold,
target_fps=output_fps,
binary_confidence_threshold=binary_confidence_threshold,
)
# Debug: Print what the pipeline returned
print("\n" + "=" * 80)
print("PIPELINE RESULTS DEBUG:")
print(f" results type: {type(results)}")
if isinstance(results, dict):
print(f" results keys: {list(results.keys())}")
print("=" * 80 + "\n")
vine_pipe.box_threshold = box_threshold
vine_pipe.text_threshold = text_threshold
vine_pipe.target_fps = output_fps
if isinstance(results, Mapping):
results_dict = results
elif isinstance(results, Sequence) and results and isinstance(results[0], Mapping):
results_dict = results[0]
else:
results_dict = {}
visualizations = results_dict.get("visualizations") or {}
vine = visualizations.get("vine") or {}
all_vis = vine.get("all") or {}
result_video_path = all_vis.get("video_path")
if not result_video_path:
candidates = sorted(
Path(visualization_dir).rglob("*.mp4"),
key=lambda p: p.stat().st_mtime,
reverse=True,
)
result_video_path = str(candidates[0]) if candidates else None
summary = results_dict.get("summary") or {}
if result_video_path and os.path.exists(result_video_path):
gradio_tmp = Path(
os.environ.get("GRADIO_TEMP_DIR", tempfile.gettempdir())
) / "vine_outputs"
gradio_tmp.mkdir(parents=True, exist_ok=True)
dest_path = gradio_tmp / Path(result_video_path).name
try:
shutil.copyfile(result_video_path, dest_path)
video_path_for_ui = str(dest_path)
except Exception as e:
print(f"Warning: failed to copy video to Gradio temp dir: {e}")
video_path_for_ui = str(result_video_path)
else:
video_path_for_ui = None
print(
"Warning: annotated video not found or empty; check visualization settings."
)
# Debug: Print summary structure
import json
print("=" * 80)
print("SUMMARY DEBUG OUTPUT:")
print(f"Summary type: {type(summary)}")
print(f"Summary keys: {summary.keys() if isinstance(summary, dict) else 'N/A'}")
if isinstance(summary, dict):
print("\nFULL SUMMARY JSON:")
print(json.dumps(summary, indent=2, default=str))
print("\n" + "=" * 80)
# Check for any keys that might contain binary relation data
print("\nLOOKING FOR BINARY RELATION DATA:")
possible_keys = ['binary', 'binary_keywords', 'binary_relations', 'object_pairs',
'pairs', 'relations', 'interactions', 'pairwise']
for pkey in possible_keys:
if pkey in summary:
print(f" FOUND: '{pkey}' -> {summary[pkey]}")
print("\nALL KEYS IN SUMMARY:")
for key in summary.keys():
print(f"\n{key}:")
print(f" Type: {type(summary[key])}")
if isinstance(summary[key], dict):
print(f" Length: {len(summary[key])}")
print(f" Keys (first 10): {list(summary[key].keys())[:10]}")
# Print all items for anything that might be binary relations
if any(term in key.lower() for term in ['binary', 'pair', 'relation', 'interaction']):
print(f" ALL ITEMS:")
for k, v in list(summary[key].items())[:20]: # First 20 items
print(f" {k}: {v}")
else:
print(f" Sample: {dict(list(summary[key].items())[:2])}")
elif isinstance(summary[key], list):
print(f" Length: {len(summary[key])}")
print(f" Sample: {summary[key][:2]}")
print("=" * 80)
# Format summary as readable markdown text, filtering by confidence threshold
formatted_summary = format_summary(summary, binary_confidence_threshold)
return video_path_for_ui, formatted_summary
def _video_component(label: str, *, is_output: bool = False):
"""
Build a Gradio Video component that is compatible with older Gradio versions
(no `type`/`sources`/`format` kwargs) and newer ones when available.
"""
kwargs = {"label": label}
sig = inspect.signature(gr.Video.__init__)
# Only set format for OUTPUT components
if is_output and "format" in sig.parameters:
kwargs["format"] = "mp4"
if not is_output:
if "type" in sig.parameters:
kwargs["type"] = "filepath"
if "sources" in sig.parameters:
kwargs["sources"] = ["upload"]
# Restrict to MP4 files only
if "file_types" in sig.parameters:
kwargs["file_types"] = [".mp4"]
if is_output and "autoplay" in sig.parameters:
kwargs["autoplay"] = True
return gr.Video(**kwargs)
def _create_blocks():
"""
Build a Blocks context that works across Gradio versions.
"""
blocks_kwargs = {"title": "VINE Demo"}
soft_theme = None
if hasattr(gr, "themes") and hasattr(gr.themes, "Soft"):
try:
soft_theme = gr.themes.Soft()
except Exception:
soft_theme = None
if "theme" in inspect.signature(gr.Blocks).parameters and soft_theme is not None:
blocks_kwargs["theme"] = soft_theme
return gr.Blocks(**blocks_kwargs)
# Create Gradio interface with two-column layout
with _create_blocks() as demo:
gr.Markdown(
"""
# 🎬 VINE: Video-based Interaction and Event Detection
Upload an MP4 video and specify keywords to detect objects, actions, and interactions in your video.
"""
)
with gr.Row():
# Left column: Inputs
with gr.Column(scale=1):
gr.Markdown("### Input Configuration")
video_input = _video_component("Upload Video (MP4 only)", is_output=False)
gr.Markdown("*Note: Only MP4 format is currently supported*")
gr.Markdown("#### Detection Keywords")
categorical_input = gr.Textbox(
label="Categorical Keywords",
placeholder="e.g., person, car, dog",
value="person, car, dog",
info="Objects to detect in the video (comma-separated)"
)
unary_input = gr.Textbox(
label="Unary Keywords",
placeholder="e.g., walking, running, standing",
value="walking, running, standing",
info="Single-object actions to detect (comma-separated)"
)
binary_input = gr.Textbox(
label="Binary Keywords",
placeholder="e.g., chasing, carrying",
info="Object-to-object interactions to detect (comma-separated)"
)
gr.Markdown("#### Processing Settings")
fps_input = gr.Number(
label="Output FPS",
value=1,
info="Frames per second for processing (lower = faster)"
)
with gr.Accordion("Advanced Settings", open=False):
box_threshold_input = gr.Slider(
label="Box Threshold",
minimum=0.1,
maximum=0.9,
value=0.35,
step=0.05,
info="Confidence threshold for object detection"
)
text_threshold_input = gr.Slider(
label="Text Threshold",
minimum=0.1,
maximum=0.9,
value=0.25,
step=0.05,
info="Confidence threshold for text-based detection"
)
binary_confidence_input = gr.Slider(
label="Binary Relation Confidence Threshold",
minimum=0.0,
maximum=1.0,
value=0.8,
step=0.05,
info="Minimum confidence to show binary relations and object pairs"
)
submit_btn = gr.Button("🚀 Process Video", variant="primary", size="lg")
# Right column: Outputs
with gr.Column(scale=1):
gr.Markdown("### Results")
video_output = _video_component("Annotated Video Output", is_output=True)
gr.Markdown("### Detection Summary")
summary_output = gr.Markdown(
value="Results will appear here after processing...",
elem_classes=["summary-output"]
)
gr.Markdown(
"""
---
### How to Use
1. Upload an MP4 video file
2. Specify the objects, actions, and interactions you want to detect
3. Adjust processing settings if needed (including binary relation confidence threshold)
4. Click "Process Video" to analyze
The system will automatically detect all binary relations between detected objects
and show only those with confidence above the threshold (default: 0.8).
"""
)
submit_btn.click(
fn=process_video,
inputs=[
video_input,
categorical_input,
unary_input,
binary_input,
fps_input,
box_threshold_input,
text_threshold_input,
binary_confidence_input,
],
outputs=[video_output, summary_output],
)
if __name__ == "__main__":
print("Got to main")
demo.launch(share=True, debug=True)
|