File size: 12,762 Bytes
f9a6349
 
 
 
 
 
 
 
 
f71f431
 
 
 
 
 
f9a6349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
888f9e4
 
f9a6349
 
 
 
 
 
 
 
 
17f21ca
 
f9a6349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17f21ca
f9a6349
 
 
 
 
 
 
 
17f21ca
f9a6349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17f21ca
 
 
 
 
 
 
 
 
 
 
f9a6349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17f21ca
f9a6349
 
17f21ca
 
 
 
 
 
 
 
f9a6349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21f4849
 
 
 
f9a6349
 
 
 
 
 
 
 
 
 
 
 
 
 
21f4849
f9a6349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17f21ca
 
 
f9a6349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17f21ca
f9a6349
17f21ca
 
 
f9a6349
17f21ca
 
 
f9a6349
17f21ca
 
 
 
 
 
 
 
 
 
 
 
 
21f4849
17f21ca
 
 
 
 
21f4849
17f21ca
 
 
 
21f4849
17f21ca
 
 
 
 
 
21f4849
17f21ca
 
 
 
 
 
 
 
 
21f4849
17f21ca
 
 
 
 
 
 
21f4849
17f21ca
 
 
 
 
 
 
21f4849
17f21ca
 
 
 
 
 
 
 
 
 
 
21f4849
17f21ca
 
 
 
 
 
 
 
 
 
 
 
 
 
f9a6349
 
 
 
 
 
 
 
 
 
 
17f21ca
f9a6349
17f21ca
f9a6349
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
from pathlib import Path
from collections.abc import Mapping, Sequence
from functools import lru_cache
import inspect
import shutil
import tempfile
import os
import sys

# Add src/ to sys.path so LASER, video-sam2, GroundingDINO are importable
current_dir = Path(__file__).resolve().parent
src_dir = current_dir / "src"
if src_dir.is_dir() and str(src_dir) not in sys.path:
    sys.path.insert(0, str(src_dir))

import spaces  # <-- ZeroGPU integration
import gradio as gr
import torch
from transformers import pipeline  # not strictly necessary, but fine


# -----------------------------
# Environment / diagnostics
# -----------------------------
os.environ["GRADIO_TEMP_DIR"] = str(Path(__file__).parent / "gradio_temp")
os.environ["OPENAI_API_KEY"] = "test"
os.environ["OMP_NUM_THREADS"] = "4"

print("All imports finished")
print(f"Python version: {sys.version}")
print(f"PyTorch version: {torch.__version__}")
print(f"CUDA available: {torch.cuda.is_available()}")
print(f"CUDA version: {torch.version.cuda}")
print(f"cuDNN version: {torch.backends.cudnn.version()}")
print(f"Number of GPUs: {torch.cuda.device_count()}")

if torch.cuda.is_available():
    for i in range(torch.cuda.device_count()):
        print(f"GPU {i}: {torch.cuda.get_device_name(i)}")
        print(
            f"  Memory: {torch.cuda.get_device_properties(i).total_memory / 1e9:.2f} GB"
        )

torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
os.environ["TORCH_DTYPE"] = "float32"
torch.set_default_dtype(torch.float32)

current_dir = Path(__file__).resolve().parent
# For Spaces, assume checkpoints live alongside app.py or in a "checkpoints" subdir.
# If you keep them next to app.py locally, this still works.
# NOTE: SAM2 config uses Hydra, so we use just the filename (it searches in sam2/configs/)
sam_config_path = "sam2_hiera_t.yaml"  # Hydra will find this in sam2/configs/
sam_checkpoint_path = str(current_dir / "sam2_hiera_tiny.pt")
gd_config_path = str(current_dir / "GroundingDINO_SwinT_OGC.py")
gd_checkpoint_path = str(current_dir / "groundingdino_swint_ogc.pth")
visualization_dir = str(current_dir / "outputs")
print(
    f"Setting up paths: {sam_config_path}, {sam_checkpoint_path}, {gd_config_path}, {gd_checkpoint_path}"
)




@lru_cache(maxsize=1)
def _load_vine_pipeline():
    """
    Lazy-load and cache the Vine pipeline so we don't re-download/rebuild it on every request.
    """
    from vine_hf import VineConfig, VineModel, VinePipeline

    config = VineConfig(
        segmentation_method="grounding_dino_sam2",
        model_name="openai/clip-vit-base-patch32",
        use_hf_repo=True,
        model_repo="KevinX-Penn28/testing",
        box_threshold=0.35,
        text_threshold=0.25,
        target_fps=1,  # default 1 FPS
        topk_cate=5,
        white_alpha=0.3,
        visualization_dir=visualization_dir,
        visualize=True,
        debug_visualizations=False,
        device="cuda",
        categorical_pool="max",
    )
    model = VineModel(config)
    return VinePipeline(
        model=model,
        tokenizer=None,
        sam_config_path=sam_config_path,
        sam_checkpoint_path=sam_checkpoint_path,
        gd_config_path=gd_config_path,
        gd_checkpoint_path=gd_checkpoint_path,
        device="cuda",
        trust_remote_code=True,
    )


@spaces.GPU(duration=120)  # Up to ~5 minutes of H200 ZeroGPU time per call
def process_video(
    video_file,
    categorical_keywords,
    unary_keywords,
    binary_keywords,
    output_fps,
    box_threshold,
    text_threshold,
    binary_confidence_threshold,
):
    vine_pipe = _load_vine_pipeline()

    # Normalize incoming video input to a file path
    if isinstance(video_file, dict):
        video_file = (
            video_file.get("name")
            or video_file.get("filepath")
            or video_file.get("data")
        )
    if not isinstance(video_file, (str, Path)):
        raise ValueError(f"Unsupported video input type: {type(video_file)}")

    categorical_keywords = (
        [kw.strip() for kw in categorical_keywords.split(",")]
        if categorical_keywords
        else []
    )
    unary_keywords = (
        [kw.strip() for kw in unary_keywords.split(",")] if unary_keywords else []
    )
    binary_keywords = (
        [kw.strip() for kw in binary_keywords.split(",")] if binary_keywords else []
    )

    # Debug: Print what we're sending to the pipeline
    print("\n" + "=" * 80)
    print("INPUT TO VINE PIPELINE:")
    print(f"  categorical_keywords: {categorical_keywords}")
    print(f"  unary_keywords: {unary_keywords}")
    print(f"  binary_keywords: {binary_keywords}")
    print("=" * 80 + "\n")

    # Object pairs is now optional - empty list will auto-generate all pairs in vine_model.py
    object_pairs = []

    results = vine_pipe(
        inputs=video_file,
        categorical_keywords=categorical_keywords,
        unary_keywords=unary_keywords,
        binary_keywords=binary_keywords,
        object_pairs=object_pairs,
        segmentation_method="grounding_dino_sam2",
        return_top_k=5,
        include_visualizations=True,
        debug_visualizations=False,
        device="cuda",
        box_threshold=box_threshold,
        text_threshold=text_threshold,
        target_fps=output_fps,
        binary_confidence_threshold=binary_confidence_threshold,
    )

    # Debug: Print what the pipeline returned
    print("\n" + "=" * 80)
    print("PIPELINE RESULTS DEBUG:")
    print(f"  results type: {type(results)}")
    if isinstance(results, dict):
        print(f"  results keys: {list(results.keys())}")
    print("=" * 80 + "\n")

    vine_pipe.box_threshold = box_threshold
    vine_pipe.text_threshold = text_threshold
    vine_pipe.target_fps = output_fps

    if isinstance(results, Mapping):
        results_dict = results
    elif isinstance(results, Sequence) and results and isinstance(results[0], Mapping):
        results_dict = results[0]
    else:
        results_dict = {}

    visualizations = results_dict.get("visualizations") or {}
    vine = visualizations.get("vine") or {}
    all_vis = vine.get("all") or {}
    result_video_path = all_vis.get("video_path")
    if not result_video_path:
        candidates = sorted(
            Path(visualization_dir).rglob("*.mp4"),
            key=lambda p: p.stat().st_mtime,
            reverse=True,
        )
        result_video_path = str(candidates[0]) if candidates else None
    summary = results_dict.get("summary") or {}

    if result_video_path and os.path.exists(result_video_path):
        gradio_tmp = (
            Path(os.environ.get("GRADIO_TEMP_DIR", tempfile.gettempdir()))
            / "vine_outputs"
        )
        gradio_tmp.mkdir(parents=True, exist_ok=True)
        dest_path = gradio_tmp / Path(result_video_path).name
        try:
            shutil.copyfile(result_video_path, dest_path)
            video_path_for_ui = str(dest_path)
        except Exception as e:
            print(f"Warning: failed to copy video to Gradio temp dir: {e}")
            video_path_for_ui = str(result_video_path)
    else:
        video_path_for_ui = None
        print(
            "Warning: annotated video not found or empty; check visualization settings."
        )

    return video_path_for_ui, summary


def _video_component(label: str, *, is_output: bool = False):
    """
    Build a Gradio Video component that is compatible with older Gradio versions
    (no `type`/`sources`/`format` kwargs) and newer ones when available.
    """
    kwargs = {"label": label}
    sig = inspect.signature(gr.Video.__init__)

    # Only set format for OUTPUT components
    if is_output and "format" in sig.parameters:
        kwargs["format"] = "mp4"

    if not is_output:
        if "type" in sig.parameters:
            kwargs["type"] = "filepath"
        if "sources" in sig.parameters:
            kwargs["sources"] = ["upload"]
        # Restrict to MP4 files only
        if "file_types" in sig.parameters:
            kwargs["file_types"] = [".mp4"]

    if is_output and "autoplay" in sig.parameters:
        kwargs["autoplay"] = True

    return gr.Video(**kwargs)


def _create_blocks():
    """
    Build a Blocks context that works across Gradio versions.
    """
    blocks_kwargs = {"title": "VINE Demo"}
    soft_theme = None

    if hasattr(gr, "themes") and hasattr(gr.themes, "Soft"):
        try:
            soft_theme = gr.themes.Soft()
        except Exception:
            soft_theme = None

    if "theme" in inspect.signature(gr.Blocks).parameters and soft_theme is not None:
        blocks_kwargs["theme"] = soft_theme

    return gr.Blocks(**blocks_kwargs)


# Create Gradio interface with two-column layout
with _create_blocks() as demo:
    gr.Markdown(
        """
        # ๐ŸŽฌ VINE: Video-based Interaction and Event Detection

        Upload an MP4 video and specify keywords to detect objects, actions, and interactions in your video.
        """
    )

    with gr.Row():
        # Left column: Inputs
        with gr.Column(scale=1):
            gr.Markdown("### Input Configuration")

            video_input = _video_component("Upload Video (MP4 only)", is_output=False)
            gr.Markdown("*Note: Only MP4 format is currently supported*")

            gr.Markdown("#### Detection Keywords")
            categorical_input = gr.Textbox(
                label="Categorical Keywords",
                placeholder="e.g., person, car, dog",
                value="person, car, dog",
                info="Objects to detect in the video (comma-separated)",
            )
            unary_input = gr.Textbox(
                label="Unary Keywords",
                placeholder="e.g., walking, running, standing",
                value="walking, running, standing",
                info="Single-object actions to detect (comma-separated)",
            )
            binary_input = gr.Textbox(
                label="Binary Keywords",
                placeholder="e.g., chasing, carrying",
                info="Object-to-object interactions to detect (comma-separated)",
            )

            gr.Markdown("#### Processing Settings")
            fps_input = gr.Number(
                label="Output FPS",
                value=1,
                info="Frames per second for processing (lower = faster)",
            )

            with gr.Accordion("Advanced Settings", open=False):
                box_threshold_input = gr.Slider(
                    label="Box Threshold",
                    minimum=0.1,
                    maximum=0.9,
                    value=0.35,
                    step=0.05,
                    info="Confidence threshold for object detection",
                )
                text_threshold_input = gr.Slider(
                    label="Text Threshold",
                    minimum=0.1,
                    maximum=0.9,
                    value=0.25,
                    step=0.05,
                    info="Confidence threshold for text-based detection",
                )
                binary_confidence_input = gr.Slider(
                    label="Binary Relation Confidence Threshold",
                    minimum=0.0,
                    maximum=1.0,
                    value=0.8,
                    step=0.05,
                    info="Minimum confidence to show binary relations and object pairs",
                )

            submit_btn = gr.Button("๐Ÿš€ Process Video", variant="primary", size="lg")

        # Right column: Outputs
        with gr.Column(scale=1):
            gr.Markdown("### Results")

            video_output = _video_component("Annotated Video Output", is_output=True)

            gr.Markdown("### Detection Summary")
            summary_output = gr.JSON(label="Summary of Detected Events")

    gr.Markdown(
        """
        ---
        ### How to Use
        1. Upload an MP4 video file
        2. Specify the objects, actions, and interactions you want to detect
        3. Adjust processing settings if needed (including binary relation confidence threshold)
        4. Click "Process Video" to analyze

        The system will automatically detect all binary relations between detected objects
        and show only those with confidence above the threshold (default: 0.8).
        """
    )

    submit_btn.click(
        fn=process_video,
        inputs=[
            video_input,
            categorical_input,
            unary_input,
            binary_input,
            fps_input,
            box_threshold_input,
            text_threshold_input,
            binary_confidence_input,
        ],
        outputs=[video_output, summary_output],
    )

if __name__ == "__main__":
    print("Got to main")
    demo.launch(share=True, debug=True)